Advanced Search
Volume 43 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
Yan ZUO, Xuejiao LIU, Dongliang PENG. UAV Path Planning for AOA-based Source Localization with Distance-Dependent Noises[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1192-1198. doi: 10.11999/JEIT200078
Citation: Yan ZUO, Xuejiao LIU, Dongliang PENG. UAV Path Planning for AOA-based Source Localization with Distance-Dependent Noises[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1192-1198. doi: 10.11999/JEIT200078

UAV Path Planning for AOA-based Source Localization with Distance-Dependent Noises

doi: 10.11999/JEIT200078
Funds:  The National Natural Science Foundation of China (61673146, 61771028, 61973102), Fund of Science and Technology on Electronic Information Control Laboratory (6142105200102)
  • Received Date: 2020-01-19
  • Rev Recd Date: 2020-06-01
  • Available Online: 2020-12-11
  • Publish Date: 2021-04-20
  • An optimal path planning problem is investigated for Angle-Of-Arrival (AOA) source localization using Unmanned Aerial Vehicles (UAVs) equipped with passive sensors. The more realistic model is considered where the variance of AOA measurement noises is a function of the source-to-sensor distances, which complicates AOA-based source localization. A modified Variable Gain Unscented Kalman Filter (VG-UKF)is developed to adapt to distance-dependent variance of AOA measurement noises. The Generalized Cramer-Rao Lower Bound (GCRLB) of AOA localization is calculated. Further, the unconstrained optimal sensor placement and constrained optimal sensor placement are theoretically analyzed. Then a path planning model for UAVs is constructed with minimizing the trace of GCRLB, which is solved optimally with penalty function and LM (Levenberg-Marquardt) algorithm. The effectiveness of the proposed algorithm is illustrated with simulation results.
  • loading
  • LOIZOU S G and KUMAR V. Biologically inspired bearing-only navigation and tracking[C]. The 2007 46th IEEE Conference on Decision and Control, New Orleans, USA, 2007: 1386–1391. doi: 10.1109/CDC.2007.4435005.
    GAVISH M and WEISS A J. Performance analysis of bearing-only target location algorithms[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(3): 817–828. doi: 10.1109/7.256302
    WANG Yue and HO K C. An asymptotically efficient estimator in closed-form for 3-D AOA localization using a sensor network[J]. IEEE Transactions on Wireless Communications, 2015, 14(12): 6524–6535. doi: 10.1109/TWC.2015.2456057
    NGUYEN N H and DOĞANCAY K. Improved pseudolinear Kalman filter algorithms for bearings-only target tracking[J]. IEEE Transactions on Signal Processing, 2017, 65(23): 6119–6134. doi: 10.1109/TSP.2017.2749207
    JAWAHAR A and RAO S K. Modified polar extended Kalman filter (MP-EKF) for bearings-only target tracking[J]. Indian Journal of Science and Technology, 2016, 9(26): 1–5. doi: 10.17485/ijst/2016/v9i26/90307
    BISHOP A N, FIDAN B, ANDERSON B D O, et al. Optimality analysis of sensor-target localization geometries[J]. Automatica, 2010, 46(3): 479–492. doi: 10.1016/j.automatica.2009.12.003
    DOGANCAY K. UAV Path planning for passive emitter localization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1150–1166. doi: 10.1109/taes.2012.6178054
    MORENO-SALINAS D, PASCOAL A, and ARANDA J. Sensor networks for optimal target localization with bearings-only measurements in constrained three-dimensional scenarios[J]. Sensors, 2013, 13(8): 10386–10417. doi: 10.3390/s130810386
    HERNANDEZ M. Optimal sensor trajectories in bearings-only tracking[C]. The 7th International Conference on Information Fusion (FUSION 2004), Stockholm, Sweden, 2004: 893–900.
    XU Sheng and DOĞANCAY K. Optimal sensor placement for 3-D angle-of-arrival target localization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1196–1211. doi: 10.1109/TAES.2017.2667999
    RAO S S. Engineering Optimization: Theory and Practice[M]. 4th ed. Hoboken, USA: John Wiley & Sons, 2009. doi: 10.1002/9780470549124.
    CORBETS J B and LANGELAAN J W. Parameterized trajectories for target localization using small and micro unmanned aerial vehicles[C]. 2008 American Control Conference, Seattle, USA, 2008: 672–677.
    DOGANCAY K. Online optimization of receiver trajectories for scan-based emitter localization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 1117–1125. doi: 10.1109/TAES.2007.4383601
    VAN TREES H L. Detection, Estimation, and Modulation Theory: Detection, Estimation, and Linear Modulation Theory[M]. Hoboken, USA: John Wiley & Sons, 2001. doi: 10.1002/0471221082.
    CASSIOLI D, WIN M Z, and MOLISCH A F. The ultra-wide bandwidth indoor channel: From statistical model to simulations[J]. IEEE Journal on Selected Areas in Communications, 2002, 20(6): 1247–1257. doi: 10.1109/jsac.2002.801228
    朱子尧, 韩树平, 郭正东, 等. 乘性噪声背景下基于非线性渐消滤波的单信标测距定位算法[J]. 电子与信息学报, 2019, 41(1): 165–171. doi: 10.11999/JEIT180239

    ZHU Ziyao, HAN Shuping, GUO Zhengdong, et al. Single beacon location algorithm based on nonlinear fading filter under multiplicative noise background[J]. Journal of Electronics &Information Technology, 2019, 41(1): 165–171. doi: 10.11999/JEIT180239
    HAMDOLLAHZADEH M, AMIRI R, and BEHNIA F. Optimal sensor placement for multi-source AOA localisation with distance-dependent noise model[J]. IET Radar, Sonar & Navigation, 2019, 13(6): 881–891. doi: 10.1049/iet-rsn.2018.5426
    WANG Weijia, BAI Peng, ZHOU Yu, et al. Optimal configuration analysis of AOA localization and optimal heading angles generation method for UAV swarms[J]. IEEE Access, 2019, 7: 70117–70129. doi: 10.1109/ACCESS.2019.2918299
    CHEN Liang. A modified Levenberg–Marquardt method with line search for nonlinear equations[J]. Computational Optimization and Applications, 2016, 65(5): 753–779. doi: 10.1007/s10589-016-9852-y
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (1129) PDF downloads(99) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return