Citation: | Yan ZHANG, Baoping WANG, Yang FANG, Jiahui WANG, Zuxun SONG. 3D Radar Imaging Based on Target Scenario Structer Sparse Reconstruction[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1185-1191. doi: 10.11999/JEIT200071 |
洪文, 王彦平, 林赟, 等. 新体制SAR三维成像技术研究进展[J]. 雷达学报, 2018, 7(6): 633–654. doi: 10.12000/JR18109
HONG Wen, WANG Yanping, LIN Yun, et al. Research progress on three-dimensional SAR imaging techniques[J]. Journal of Radars, 2018, 7(6): 633–654. doi: 10.12000/JR18109
|
张晓玲, 师君, 韦顺君, 等. 三维合成孔径雷达[M]. 北京: 国防工业出版社, 2017: 1–17, 81–148.
ZHANG Xiaoling, SHI Jun, WEI Shunjun, et al. Three Dimensional Synthetic Aperture Radar[M] Beijing: National Defense Industry Press, 2017: 1–17, 81–148.
|
刘新, 阎焜, 杨光耀, 等. UWB-MIMO穿墙雷达三维成像与运动补偿算法研究[J]. 电子与信息学报, 2020, 42(9): 2253–2260. doi: 10.11999/JEIT190356
LIU Xin, YAN Kun, YANG Guangyao, et al. Study on 3D imaging and motion compensation algorithm for UWB-MIMO through-wall radar[J]. Journal of Electronics &Information Technology, 2020, 42(9): 2253–2260. doi: 10.11999/JEIT190356
|
王伟, 胡子英, 龚琳舒. MIMO雷达三维成像自适应Off-grid校正方法[J]. 电子与信息学报, 2019, 41(6): 1294–1301. doi: 10.11999/JEIT180145
WANG Wei, HU Ziying, and GONG Linshu. Adaptive off-grid calibration method for MIMO radar 3D imaging[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1294–1301. doi: 10.11999/JEIT180145
|
杨俊刚, 黄晓涛, 金添. 压缩感知雷达成像[M]. 北京: 科学出版社, 2014: 1–29.
YANG Jungang, HUANG Xiaotao, and JIN Tian. Compressed Sensing Radar Imaging[M]. Beijing: Science Press, 2014: 1–29.
|
田鹤, 于海锋, 朱宇, 等. 基于频域稀疏压缩感知的星载SAR稀疏重航过3维成像[J]. 电子与信息学报, 2020, 42(8): 2021–2028. doi: 10.11999/JEJT190638
TIAN He, YU Haifeng, ZHU Yu, et al. Sparse flight 3-D imaging of spaceborne SAR based on frequency domain sparse compressed sensing[J]. Journal of Electronics &Information Technology, 2020, 42(8): 2021–2028. doi: 10.11999/JEJT190638
|
LOPEZ-SANCHEZ J M and FORTUNY-GUASCH J. 3-D radar imaging using range migration techniques[J]. IEEE Transactions on Antennas and Propagation, 2000, 48(5): 728–737. doi: 10.1109/8.855491
|
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
|
BARANIUK R and STEEGHS P. Compressive radar imaging[C]. Proceedings of 2007 IEEE Radar Conference, Boston, USA, 2007: 128–133. doi: 10.1109/RADAR.2007.374203.
|
ZHANG Siqian, DONG Ganggang, and KUANG Gangyao. Matrix completion for downward-looking 3-D SAR imaging with a random sparse linear array[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 1994–2006. doi: 10.1109/TGRS.2017.2771826
|
HU Xiaowei, TONG Ningning, GUO Yiduo, et al. MIMO radar 3-D imaging based on multi-dimensional sparse recovery and signal support prior information[J]. IEEE Sensors Journal, 2018, 18(8): 3152–3162. doi: 10.1109/JSEN.2018.2810705
|
YANIK M E and TORLAK M. Near-field MIMO-SAR millimeter-wave imaging with sparsely sampled aperture data[J]. IEEE Access, 2019, 7: 31801–31819. doi: 10.1109/ACCESS.2019.2902859
|
CHU Y J and MAK C M. A new QR decomposition-based RLS algorithm using the split Bregman method for L1-regularized problems[J]. Signal Processing, 2016, 128: 303–308. doi: 10.1016/j.sigpro.2016.04.013
|
徐宗本, 吴一戎, 张冰尘, 等. 基于L1/2正则化理论的稀疏雷达成像[J]. 科学通报, 2018, 63(14): 1307–1319. doi: 10.1360/N972018-00372
XU Zongben, WU Yirong, ZHANG Bingchen, et al. Sparse radar imaging based on L1/2 regularization theory[J]. Chinese Science Bulletin, 2018, 63(14): 1307–1319. doi: 10.1360/N972018-00372
|
YANG Zengli and ZHENG Y R. A comparative study of compressed sensing approaches for 3-D synthetic aperture radar image reconstruction[J]. Digital Signal Processing, 2014, 32: 24–33. doi: 10.1016/j.dsp.2014.05.016
|
ZAMANI H and FAKHARZADEH M. 1.5-D sparse array for millimeter-wave imaging based on compressive sensing techniques[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(4): 2008–2015. doi: 10.1109/TAP.2018.2800531
|