Advanced Search
Volume 43 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
Yan ZHANG, Baoping WANG, Yang FANG, Jiahui WANG, Zuxun SONG. 3D Radar Imaging Based on Target Scenario Structer Sparse Reconstruction[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1185-1191. doi: 10.11999/JEIT200071
Citation: Yan ZHANG, Baoping WANG, Yang FANG, Jiahui WANG, Zuxun SONG. 3D Radar Imaging Based on Target Scenario Structer Sparse Reconstruction[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1185-1191. doi: 10.11999/JEIT200071

3D Radar Imaging Based on Target Scenario Structer Sparse Reconstruction

doi: 10.11999/JEIT200071
Funds:  The National Natural Science Foundation of China (61472324)
  • Received Date: 2020-01-17
  • Rev Recd Date: 2020-11-05
  • Available Online: 2020-11-11
  • Publish Date: 2021-04-20
  • The three-Dimensional (3D) radar imaging mathods based on sparse representation by the scattering intensity of imaging sceen has a poor representation of geometric details on the shape of the target, which isn’t conducive to target recognition. Firstly, the structural characteristics of scattering intensity in the imaging scenario are analyzed in this paper. Then, by the structured sparse representation with the gradient information of scattering points, a structured sparse reconstruction model is constructed. Finally, the 3D imaging result is reconstructed by a improved joint Orthogonal Matching Pursuit (OMP) algorithm. The experimental results show that the proposed method has good anti-noise and imaging quality, and can reflect the geometric details of the target.
  • loading
  • 洪文, 王彦平, 林赟, 等. 新体制SAR三维成像技术研究进展[J]. 雷达学报, 2018, 7(6): 633–654. doi: 10.12000/JR18109

    HONG Wen, WANG Yanping, LIN Yun, et al. Research progress on three-dimensional SAR imaging techniques[J]. Journal of Radars, 2018, 7(6): 633–654. doi: 10.12000/JR18109
    张晓玲, 师君, 韦顺君, 等. 三维合成孔径雷达[M]. 北京: 国防工业出版社, 2017: 1–17, 81–148.

    ZHANG Xiaoling, SHI Jun, WEI Shunjun, et al. Three Dimensional Synthetic Aperture Radar[M] Beijing: National Defense Industry Press, 2017: 1–17, 81–148.
    刘新, 阎焜, 杨光耀, 等. UWB-MIMO穿墙雷达三维成像与运动补偿算法研究[J]. 电子与信息学报, 2020, 42(9): 2253–2260. doi: 10.11999/JEIT190356

    LIU Xin, YAN Kun, YANG Guangyao, et al. Study on 3D imaging and motion compensation algorithm for UWB-MIMO through-wall radar[J]. Journal of Electronics &Information Technology, 2020, 42(9): 2253–2260. doi: 10.11999/JEIT190356
    王伟, 胡子英, 龚琳舒. MIMO雷达三维成像自适应Off-grid校正方法[J]. 电子与信息学报, 2019, 41(6): 1294–1301. doi: 10.11999/JEIT180145

    WANG Wei, HU Ziying, and GONG Linshu. Adaptive off-grid calibration method for MIMO radar 3D imaging[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1294–1301. doi: 10.11999/JEIT180145
    杨俊刚, 黄晓涛, 金添. 压缩感知雷达成像[M]. 北京: 科学出版社, 2014: 1–29.

    YANG Jungang, HUANG Xiaotao, and JIN Tian. Compressed Sensing Radar Imaging[M]. Beijing: Science Press, 2014: 1–29.
    田鹤, 于海锋, 朱宇, 等. 基于频域稀疏压缩感知的星载SAR稀疏重航过3维成像[J]. 电子与信息学报, 2020, 42(8): 2021–2028. doi: 10.11999/JEJT190638

    TIAN He, YU Haifeng, ZHU Yu, et al. Sparse flight 3-D imaging of spaceborne SAR based on frequency domain sparse compressed sensing[J]. Journal of Electronics &Information Technology, 2020, 42(8): 2021–2028. doi: 10.11999/JEJT190638
    LOPEZ-SANCHEZ J M and FORTUNY-GUASCH J. 3-D radar imaging using range migration techniques[J]. IEEE Transactions on Antennas and Propagation, 2000, 48(5): 728–737. doi: 10.1109/8.855491
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    BARANIUK R and STEEGHS P. Compressive radar imaging[C]. Proceedings of 2007 IEEE Radar Conference, Boston, USA, 2007: 128–133. doi: 10.1109/RADAR.2007.374203.
    ZHANG Siqian, DONG Ganggang, and KUANG Gangyao. Matrix completion for downward-looking 3-D SAR imaging with a random sparse linear array[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 1994–2006. doi: 10.1109/TGRS.2017.2771826
    HU Xiaowei, TONG Ningning, GUO Yiduo, et al. MIMO radar 3-D imaging based on multi-dimensional sparse recovery and signal support prior information[J]. IEEE Sensors Journal, 2018, 18(8): 3152–3162. doi: 10.1109/JSEN.2018.2810705
    YANIK M E and TORLAK M. Near-field MIMO-SAR millimeter-wave imaging with sparsely sampled aperture data[J]. IEEE Access, 2019, 7: 31801–31819. doi: 10.1109/ACCESS.2019.2902859
    CHU Y J and MAK C M. A new QR decomposition-based RLS algorithm using the split Bregman method for L1-regularized problems[J]. Signal Processing, 2016, 128: 303–308. doi: 10.1016/j.sigpro.2016.04.013
    徐宗本, 吴一戎, 张冰尘, 等. 基于L1/2正则化理论的稀疏雷达成像[J]. 科学通报, 2018, 63(14): 1307–1319. doi: 10.1360/N972018-00372

    XU Zongben, WU Yirong, ZHANG Bingchen, et al. Sparse radar imaging based on L1/2 regularization theory[J]. Chinese Science Bulletin, 2018, 63(14): 1307–1319. doi: 10.1360/N972018-00372
    YANG Zengli and ZHENG Y R. A comparative study of compressed sensing approaches for 3-D synthetic aperture radar image reconstruction[J]. Digital Signal Processing, 2014, 32: 24–33. doi: 10.1016/j.dsp.2014.05.016
    ZAMANI H and FAKHARZADEH M. 1.5-D sparse array for millimeter-wave imaging based on compressive sensing techniques[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(4): 2008–2015. doi: 10.1109/TAP.2018.2800531
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (1318) PDF downloads(95) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return