Advanced Search
Volume 43 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
Lifang HE, Xueshuang WU, Tianqi ZHANG. Quadrature Multicarrier Noise Reduction Differential Chaos Shift Keying System[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1120-1128. doi: 10.11999/JEIT200068
Citation: Lifang HE, Xueshuang WU, Tianqi ZHANG. Quadrature Multicarrier Noise Reduction Differential Chaos Shift Keying System[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1120-1128. doi: 10.11999/JEIT200068

Quadrature Multicarrier Noise Reduction Differential Chaos Shift Keying System

doi: 10.11999/JEIT200068
Funds:  The National Natural Science Foundation of China (61771085, 61371164), The Research Project of Chongqing Educational Commission (KJ1600407, KJQN201900601)
  • Received Date: 2020-01-16
  • Rev Recd Date: 2020-07-07
  • Available Online: 2020-07-22
  • Publish Date: 2021-04-20
  • The major drawbacks of MultiCarrier Differential Chaos Shift Keying (MC-DCSK) system are relating to low data rate and poor bit error performance. Therefore a Quadrature MultiCarrier Noise Reduction Differential Chaos Shift Keying (QMC-NR-DCSK) system is proposed to improve the performances of MC-DCSK system. At the transmitter, reference signal is transmitted on the predefined carrier. While the remaining M-1 carriers and the carriers with orthogonal phase at the same frequency are all used to transmit information signals by using Quadrature Modulation technology, and the data-rate to bandwidth ratio and transmission rate of which are four times higher than that of MC-DCSK system by further introducing Hilbert transformation. The noise reduction operation of the moving average filter is introduced to reduce the variance of noise at the receiver, thereby improving the bit error performance of the QMC-NR-DCSK system. The bit error rate formula and simulations of QMC-NR-DCSK system under Additive White Gaussian Noise (AWGN) channel and multi-path Rayleigh Fading Channel (RFC) are carried out respectively. The results show that QMC-NR-DCSK system can effectively improve the transmission rate, data-rate to bandwidth ratio and bit error performance, which provides a theoretical reference for the application of the multicarrier communication systems.
  • loading
  • QUYEN N X and KYAMAKYA K. Chaos-based Digital Communication Systems with Low Data-rate Wireless Applications[M]. KYAMAKYA K, MATHIS W, STOOP R, et al. Recent Advances in Nonlinear Dynamics and Synchronization. Cham, Germany: Springer, 2017: 239–269. doi: 10.1007/978-3-319-58996-1_11.
    KADDOUM G. Wireless chaos-based communication systems: A comprehensive survey[J]. IEEE Access, 2016, 4: 2621–2648. doi: 10.1109/access.2016.2572730
    ÇIÇEK S, KOCAMAZ U E, and UYAROGLU Y. Secure chaotic communication with Jerk chaotic system using sliding mode control method and its real circuit implementation[J]. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2019, 43(3): 687–698. doi: 10.1007/s40998-019-00184-9
    GALIAS Z and MAGGIO G M. Quadrature chaos-shift keying: Theory and performance analysis[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2001, 48(12): 1510–1519. doi: 10.1109/TCSI.2001.972858
    张刚, 赵畅畅, 张天骐. 短参考正交多用户差分混沌键控方案的性能分析[J]. 电子与信息学报, 2019, 41(9): 2055–2062. doi: 10.11999/JEIT181038

    ZHANG Gang, ZHAO Changchang, and ZHANG Tianqi. Performance analysis of short reference orthogonal multiuser differential chaotic shift keying scheme[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2055–2062. doi: 10.11999/JEIT181038
    NGUYEN X Q. On the study of a quadrature DCSK modulation scheme for cognitive radio[J]. International Journal of Bifurcation and Chaos, 2017, 27(9): 1750135. doi: 10.1142/S0218127417501358
    LYU Yibo, WANG Lin, CAI Guofa, et al. Iterative receiver for M-ary DCSK systems[J]. IEEE Transactions on Communications, 2015, 63(11): 3929–3936. doi: 10.1109/TCOMM.2015.2425877
    张琳, 徐位凯, 王琳, 等. 码复用差分混沌键控性能分析与同步算法[J]. 重庆邮电大学学报: 自然科学版, 2016, 28(3): 330–336. doi: 10.3979/j.issn.1673-825X.2016.03.008

    ZHANG Lin, XU Weikai, WANG Lin, et al. Performance analysis and synchronization algorithm for CS-DCSK system[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2016, 28(3): 330–336. doi: 10.3979/j.issn.1673-825X.2016.03.008
    WANG Shaonan, LIU Yingjie, and MA Weijiao. Design of a novel frequency division scheme for DCSK chaos communication system[C]. 2017 3rd International Conference on Information Management (ICIM), Chengdu, China, 2017: 317–321. doi: 10.1109/INFOMAN.2017.7950400.
    张刚, 陈和祥, 张天骐. 多用户降噪差分混沌键控通信方案[J]. 电子与信息学报, 2019, 41(2): 362–368. doi: 10.11999/JEIT171173

    ZHANG Gang, CHEN Hexiang, and ZHANG Tianqi. A multiuser noise reduction differential chaos shift keying system[J]. Journal of Electronics &Information Technology, 2019, 41(2): 362–368. doi: 10.11999/JEIT171173
    KADDOUM G, RICHARDSON F D, and GAGNON F. Design and analysis of a multi-carrier differential chaos shift keying communication system[J]. IEEE Transactions on Communications, 2013, 61(8): 3281–3291. doi: 10.1109/TCOMM.2013.071013.130225
    BAO Jiyu, XU Weikai, WANG Lin, et al. Performance analysis and sub-carriers power allocation for MC-QCSK[C]. 2015 International Conference on Wireless Communications & Signal Processing (WCSP), Nanjing, China, 2015: 1–5. doi: 10.1109/WCSP.2015.7341173.
    QUYEN N X and PHAM C K. Quadrature multi-carrier DCSK: A high-efficiency scheme for radio communications[C]. 2017 International Conference on Advanced Technologies for Communications (ATC), Quy Nhon, Vietnam, 2017: 186–191. doi: 10.1109/ATC.2017.8167614.
    YANG Hua, JIANG Guoping, TANG W K S, et al. Multi-carrier differential chaos shift keying system with subcarriers allocation for noise reduction[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65(11): 1733–1737. doi: 10.1109/TCSII.2017.2752754
    CAI Guofa, WANG Lin, and CHEN Guanrong. Capacity of the non-coherent DCSK system over rayleigh fading channel[J]. IET Communications, 2016, 10(18): 2663–2669. doi: 10.1049/iet-com.2016.0487
    MANDAL S, BANERJEE S. Analysis and CMOS implementation of a chaos-based communication system[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2004, 51(9): 1708–1722. doi: 10.1109/TCSI.2004.834482
    LONG N H, QUYEN N X, and VAN YEM V. Design of an improved multi-carrier DCSK system for digital communications[C]. 2017 International Conference on Recent Advances in Signal Processing, Telecommunications & Computing, Da Nang, Vietnam, 2017: 211–216. doi: 10.1109/SIGTELCOM.2017.7849824.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (2121) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return