Advanced Search
Volume 43 Issue 5
May  2021
Turn off MathJax
Article Contents
WU Wei, HAN Xianxiu, FAN Yingle. A Contour Detection Method Based on Interactive Perception Mechanism of Dual Visual Pathways[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2512-2521. doi: 10.11999/JEIT210818
Citation: Fenhua WANG, Qiang ZHANG, Chao HUANG, Ran ZHANG. Dynamic Gesture Recognition Combining Two-stream 3D Convolution with Attention Mechanisms[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1389-1396. doi: 10.11999/JEIT200065

Dynamic Gesture Recognition Combining Two-stream 3D Convolution with Attention Mechanisms

doi: 10.11999/JEIT200065
Funds:  The National Key Research and Development Project of China (2017YFB1400101-01), The Fundamental Research Funds for the Central Universities (FRF-BD-19-002A)
  • Received Date: 2020-01-16
  • Rev Recd Date: 2020-12-06
  • Available Online: 2020-12-18
  • Publish Date: 2021-05-18
  • Benefits from the progress of computer hardware and computing power, natural and simple dynamic gesture recognition gets a lot of attention in human-computer interaction. In view of the requirement of the accuracy of dynamic gesture recognition in human-computer interaction, a method of dynamic gesture recognition that combines Two-stream Inflated 3D (I3D) Convolution Neural Network (CNN) with the Convolutional Block Attention Module (CBAM-I3D) is proposed. In addition, relevant parameters and structures of the I3D network model are improved. In order to improve the convergence speed and stability of the model, the Batch Normalization (BN) technology is used to optimize the network, which shortens the training time of the optimized network. At the same time, experimental comparisons with various Two-stream 3D convolution methods on the open source Chinese Sign Language (CSL) recognition dataset are performed. The experimental results show that the proposed method can recognize dynamic gestures well, and the recognition rate reaches 90.76%, which is higher than other dynamic gesture recognition methods. The validity and feasibility of the proposed method are verified.
  • [1]
    TAKAHASHI T and KISHINO F. A hand gesture recognition method and its application[J]. Systems and Computers in Japan, 1992, 23(3): 38–48. doi: 10.1002/scj.4690230304
    [2]
    BANSAL B. Gesture recognition: A survey[J]. International Journal of Computer Applications, 2016, 139(2): 8–10. doi: 10.5120/ijca2016909103
    [3]
    张淑军, 张群, 李辉. 基于深度学习的手语识别综述[J]. 电子与信息学报, 2020, 42(4): 1021–1032. doi: 10.11999/JEIT190416

    ZHANG Shujun, ZHANG Qun, and LI Hui. Review of sign language recognition based on deep learning[J]. Journal of Electronics &Information Technology, 2020, 42(4): 1021–1032. doi: 10.11999/JEIT190416
    [4]
    PARCHETA Z and MARTÍNEZ-HINAREJOS C D. Sign language gesture recognition using hmm[C]. The 8th Iberian Conference on Pattern Recognition and Image Analysis, Faro, Portugal, 2017: 419–426. doi: 10.1007/978-3-319-58838-4_46.
    [5]
    PU Junfu, ZHOU Wengang, ZHANG Jihai, et al. Sign language recognition based on trajectory modeling with HMMs[C]. The 22nd International Conference on Multimedia Modeling, Miami, USA, 2016: 686–697. doi: 10.1007/978-3-319-27671-7_58.
    [6]
    SAMANTA O, ROY A, PARUI S K, et al. An HMM framework based on spherical-linear features for online cursive handwriting recognition[J]. Information Sciences, 2018, 441: 133–151. doi: 10.1016/j.ins.2018.02.004
    [7]
    MASOOD S, SRIVASTAVA A, THUWAL H C, et al. Real-time sign language gesture (word) recognition from video sequences using CNN and RNN[M]. BHATEJA V, COELLO C A C, SATAPATHY S C, et al. Intelligent Engineering Informatics. Singapore: Springer, 2018: 623–632. doi: 10.1007/978-981-10-7566-7_63.
    [8]
    DONAHUE J, JIA Yangqing, VINYALS O, et al. DeCAF: A deep convolutional activation feature for generic visual recognition[C]. The 31st International Conference on International Conference on Machine Learning, Beijing, China, 2014: I-647–I-655.
    [9]
    TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3d convolutional networks[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 4489–4497. doi: 10.1109/ICCV.2015.510.
    [10]
    CHEN Yunpeng, KALANTIDIS Y, LI Jianshu, et al. Multi-fiber networks for video recognition[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 364–380.
    [11]
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    [12]
    HUANG Jie, ZHOU Wengang, LI Houqiang, et al. Sign language recognition using 3D convolutional neural networks[C]. 2015 IEEE International Conference on Multimedia and Expo (ICME), Turin, Italy, 2015: 1–6. doi: 10.1109/ICME.2015.7177428.
    [13]
    SIMONYAN K and ZISSERMAN A. Two-stream convolutional networks for action recognition in videos[C]. The 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 568–576.
    [14]
    BAKER S, SCHARSTEIN D, LEWIS J P, et al. A database and evaluation methodology for optical flow[J]. International Journal of Computer Vision, 2011, 92(1): 1–31. doi: 10.1007/s11263-010-0390-2
    [15]
    CAO Zhe, SIMON T, WEI S E, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 1302–1310. doi: 10.1109/CVPR.2017.143.
    [16]
    CARREIRA J and ZISSERMAN A. Quo Vadis, action recognition? A new model and the kinetics dataset[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4724–4733. doi: 10.1109/CVPR.2017.502.
    [17]
    WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 3–19.
    [18]
    HUANG Jie, ZHOU Wengang, ZHANG Qilin, et al. Video-based sign language recognition without temporal segmentation[C]. The 32nd AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, USA, 2018: 2257–2264.
    [19]
    HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 2011–2023. doi: 10.1109/CVPR.2018.00745.
    [20]
    IOFFE S and SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. The 32nd International Conference on Machine Learning, Lille, France, 2015: 448–456.
    [21]
    刘天亮, 谯庆伟, 万俊伟, 等. 融合空间-时间双网络流和视觉注意的人体行为识别[J]. 电子与信息学报, 2018, 40(10): 2395–2401. doi: 10.11999/JEIT171116

    LIU Tianliang, QIAO Qingwei, WAN Junwei, et al. Human action recognition via spatio-temporal dual network flow and visual attention fusion[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2395–2401. doi: 10.11999/JEIT171116
  • Cited by

    Periodical cited type(5)

    1. 胡珍妮,常在斌,崔娟. 光谱自回归移动平均模型的贝叶斯分析方法. 电子设计工程. 2021(17): 175-179+184 .
    2. 任华新. RSSI改进算法下多目标文本数据关联特征定位研究. 内蒙古民族大学学报(自然科学版). 2020(01): 36-41 .
    3. 高云龙,王志豪,潘金艳,罗斯哲,王德鑫. 基于自适应松弛的鲁棒模糊C均值聚类算法. 电子与信息学报. 2020(07): 1774-1781 . 本站查看
    4. 张聪,顾晓清,王洪元. 一种具有抗噪能力的贝叶斯可能性聚类方法. 南京理工大学学报. 2020(05): 614-623 .
    5. 陈玉洪,张清华,杨洁. 基于区间阴影集的密度峰值聚类算法. 模式识别与人工智能. 2019(06): 531-544 .

    Other cited types(5)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (2637) PDF downloads(243) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return