Advanced Search
Volume 43 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
Tao XIE, Chunjiong ZHANG, Yongjian XU. Collaborative Parameter Update Based on Average Variance Reduction of Historical Gradients[J]. Journal of Electronics & Information Technology, 2021, 43(4): 956-964. doi: 10.11999/JEIT200061
Citation: Tao XIE, Chunjiong ZHANG, Yongjian XU. Collaborative Parameter Update Based on Average Variance Reduction of Historical Gradients[J]. Journal of Electronics & Information Technology, 2021, 43(4): 956-964. doi: 10.11999/JEIT200061

Collaborative Parameter Update Based on Average Variance Reduction of Historical Gradients

doi: 10.11999/JEIT200061
Funds:  The National Natural Science Foundation of China (61807027)
  • Received Date: 2020-01-16
  • Rev Recd Date: 2020-06-20
  • Available Online: 2020-07-23
  • Publish Date: 2021-04-20
  • The Stochastic Gradient Descent (SGD) algorithm randomly picks up a sample to estimate gradients, creating big variance which reduces the convergence speed and makes the training unstable. A Distributed SGD based on Average variance reduction, called DisSAGD is proposed. The method uses the average variance reduction based on historical gradients to update parameters in the machine learning model, requiring little gradient calculation and additional storage, but using the asynchronous communication protocol to share parameters across nodes. In order to solve the “update staleness” problem of global parameter distribution, a learning rate with an acceleration factor and an adaptive sampling strategy are included: on the one hand, when the parameter deviates from the optimal value, the acceleration factor is increased to speed up the convergence; on the other hand, when one work node is faster than the other ones, more samples are sampled for the next iteration, so that the node has more time to calculate the local gradient. Experiments show that the DisSAGD reduces significantly the waiting time of loop iterations, accelerates the convergence of the algorithm being faster than that of the controlled methods, and obtains almost linear acceleration in distributed cluster environments.
  • loading
  • 周辉林, 欧阳韬, 刘健. 基于随机平均梯度下降和对比源反演的非线性逆散射算法研究[J]. 电子与信息学报, 2020, 42(8): 2053–2058. doi: 10.11999/JEIT190566

    ZHOU Huilin, OUYANG Tao, and LIU Jian. Stochastic average gradient descent contrast source inversion based nonlinear inverse scattering method for complex objects reconstruction[J]. Journal of Electronics &Information Technology, 2020, 42(8): 2053–2058. doi: 10.11999/JEIT190566
    XING E P, HO Q, DAI Wei, et al. Petuum: A new platform for distributed machine learning on big data[J]. IEEE Transactions on Big Data, 2015, 1(2): 49–67. doi: 10.1109/TBDATA.2015.2472014
    HO Qirong, CIPAR J, CUI Henggang, et al. More effective distributed ml via a stale synchronous parallel parameter server[C]. Advances in Neural Information Processing Systems, Stateline, USA, 2013: 1223–1231.
    SHI Hang, ZHAO Yue, ZHANG Bofeng, et al. A free stale synchronous parallel strategy for distributed machine learning[C]. The 2019 International Conference on Big Data Engineering, Hong Kong, China, 2019: 23–29. doi: 10.1145/3341620.3341625.
    ZHAO Xing, AN Aijun, LIU Junfeng, et al. Dynamic stale synchronous parallel distributed training for deep learning[C]. 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), Dallas, USA, 2019: 1507–1517. doi: 10.1109/ICDCS.2019.00150.
    DEAN J, CORRADO G S, MONGA R, et al. Large scale distributed deep networks[C]. The 25th International Conference on Neural Information Processing Systems, Red Hook, USA, 2012: 1223–1231.
    赵小强, 宋昭漾. 多级跳线连接的深度残差网络超分辨率重建[J]. 电子与信息学报, 2019, 41(10): 2501–2508. doi: 10.11999/JEIT190036

    ZHAO Xiaoqiang and SONG Zhaoyang. Super-resolution reconstruction of deep residual network with multi-level skip connections[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2501–2508. doi: 10.11999/JEIT190036
    LI Mu, ANDERSEN D G, PARK J W, et al. Scaling distributed machine learning with the parameter server[C]. The 2014 International Conference on Big Data Science and Computing, Beijing, China, 2014: 583–598. https://doi.org/10.1145/2640087.2644155.
    ZHANG Ruiliang, ZHENG Shuai, and KWOK J T. Asynchronous distributed semi-stochastic gradient optimization[C]. The Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, USA, 2016: 2323–2329.
    XIE Pengtao, KIM J K, ZHOU Yi, et al. Distributed machine learning via sufficient factor broadcasting[J]. arXiv: 1511. 08486, 2015.
    LI Mu, ZHANG Tong, CHEN Yuqiang, et al. Efficient mini-batch training for stochastic optimization[C]. The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, USA, 2014: 661–670. doi: 10.1145/2623330.2623612.
    WU Jiaxiang, HUANG Weidong, HUANG Junzhou, et al. Error compensated quantized SGD and its applications to large-scale distributed optimization[C]. The 35th International Conference on Machine Learning, Stockholm, The Kingdom of Sweden, 2018.
    LE ROUX N, SCHMIDT M, and BACH F. A stochastic gradient method with an exponential convergence rate for finite training sets[C]. The 26th Annual Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 2663–2671.
    DEFAZIO A, BACH F, and LACOSTE-JULIEN S. SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives[C]. The 27th International Conference on Neural Information Processing Systems, Cambridge, USA, 2014: 1646–1654.
    BAN Zhihua, LIU Jianguo, and CAO Li. Superpixel segmentation using Gaussian mixture model[J]. IEEE Transactions on Image Processing, 2018, 27(8): 4105–4117. doi: 10.1109/TIP.2018.2836306
    WANG Pengfei, LIU Risheng, ZHENG Nenggan, et al. Asynchronous proximal stochastic gradient algorithm for composition optimization problems[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 1633–1640. doi: 10.1609/aaai.v33i01.33011633
    FERRANTI L, PU Ye, JONES C N, et al. SVR-AMA: An asynchronous alternating minimization algorithm with variance reduction for model predictive control applications[J]. IEEE Transactions on Automatic Control, 2019, 64(5): 1800–1815. doi: 10.1109/TAC.2018.2849566
    邵言剑, 陶卿, 姜纪远, 等. 一种求解强凸优化问题的最优随机算法[J]. 软件学报, 2014, 25(9): 2160–2171. doi: 10.13328/j.cnki.jos.004633

    SHAO Yanjian, TAO Qing, JIANG Jiyuan, et al. Stochastic algorithm with optimal convergence rate for strongly convex optimization problems[J]. Journal of Software, 2014, 25(9): 2160–2171. doi: 10.13328/j.cnki.jos.004633
    赵海涛, 程慧玲, 丁仪, 等. 基于深度学习的车联边缘网络交通事故风险预测算法研究[J]. 电子与信息学报, 2020, 42(1): 50–57. doi: 10.11999/JEIT190595

    ZHAO Haitao, CHENG Huiling, DING Yi, et al. Research on traffic accident risk prediction algorithm of edge internet of vehicles based on deep learning[J]. Journal of Electronics &Information Technology, 2020, 42(1): 50–57. doi: 10.11999/JEIT190595
    RAMAZANLI I, NGUYEN H, PHAM H, et al. Adaptive sampling distributed stochastic variance reduced gradient for heterogeneous distributed datasets[J]. arXiv: 2002. 08528, 2020.
    SUSSMAN D M. CellGPU: Massively parallel simulations of dynamic vertex models[J]. Computer Physics Communications, 2017, 219: 400–406. doi: 10.1016/j.cpc.2017.06.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (2375) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return