Citation: | Xinyu DA, Hongwei ZHANG, Hang HU, Yu PAN, Jinling JING. Throughput Optimization of Secondary Link in Cognitive UAV Network[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1934-1941. doi: 10.11999/JEIT200056 |
The application of Unmanned Air Vehicles (UAV)-enabled Cognitive Radio (CR) is widely used due to the convenience and high mobility of the UAV. In the UAV-based Cognitive Radio Network (CRN), the throughput optimization scheme in single radian is firstly investigated, in which the sensing radian is optimized to maximize the average throughput of UAV. Then, a multi-radian throughput optimization scheme based on Cooperative Spectrum Sensing (CSS) is studied to improve the sensing performance under the non-ideal channel, and the throughput of the UAV is maximized by utilizing an Alternative Iterative Optimization (AIO) algorithm. The simulation results show that the proposed scheme has better performance on improving the throughput of the UAV and ensuring the Quality-of-Service (QoS) of the Primary User (PU) when the channel fading is serious.
NIU Haoran, GONZALEZ-PRELCIC N, and HEATH R W. A UAV–based traffic monitoring system–invited paper[C]. The 87th IEEE Vehicular Technology Conference (VTC Spring). Porto, Portugal, 2018: 1–5. doi: 10.1109/vtcspring.2018.8417546.
|
高杨, 李东生, 程泽新. 无人机分布式集群态势感知模型研究[J]. 电子与信息学报, 2018, 40(6): 1271–1278. doi: 10.11999/JEIT170877
GAO Yang, LI Dongsheng, and CHENG Zexin. UAV distributed swarm situation awareness model[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1271–1278. doi: 10.11999/JEIT170877
|
倪磊, 达新宇, 王舒, 等. 基于物理层信息加密的卫星隐蔽通信研究[J]. 工程科学与技术, 2018, 50(1): 133–139. doi: 10.15961/j.jsuese.201700160
NI Lei, DA Xinyu, WANG Shu, et al. Research on satellite covert communication based on the information encryption of physical layer[J]. Advanced Engineering Sciences, 2018, 50(1): 133–139. doi: 10.15961/j.jsuese.201700160
|
赵太飞, 许杉, 屈瑶, 等. 基于无线紫外光隐秘通信的侦察无人机蜂群分簇算法[J]. 电子与信息学报, 2019, 41(4): 967–972. doi: 10.11999/JEIT180491
ZHAO Taifei, XU Shan, QU Yao, et al. Cluster–based algorithm of reconnaissance UAV swarm based on wireless ultraviolet secret communication[J]. Journal of Electronics &Information Technology, 2019, 41(4): 967–972. doi: 10.11999/JEIT180491
|
GUPTA A and JHA R K. A survey of 5G network: Architecture and emerging technologies[J]. IEEE Access, 2015, 3: 1206–1232. doi: 10.1109/ACCESS.2015.2461602
|
SULTANA A, ZHAO Lian, and FERNANDO X. Energy–efficient power allocation in underlay and overlay cognitive device–to–device communications[J]. IET Communications, 2019, 13(2): 162–170. doi: 10.1049/iet-com.2018.5464
|
LI He, OTA K, and DONG Mianxiong. Learning IoT in Edge: Deep learning for the internet of things with edge computing[J]. IEEE Network, 2018, 32(1): 96–101. doi: 10.1109/MNET.2018.1700202
|
SALEEM Y, REHMANI M H, and ZEADALLY S. Integration of cognitive radio technology with unmanned aerial vehicles: Issues, opportunities, and future research challenges[J]. Journal of Network and Computer Applications, 2015, 50: 15–31. doi: 10.1016/j.jnca.2014.12.002
|
NI Lei, Da Xinyu, HU Hang, et al. Outage constrained robust transmit design for secure cognitive radio with practical energy harvesting[J]. IEEE Access, 2018, 6: 71444–71454. doi: 10.1109/ACCESS.2018.2881477
|
XU Wenbo, WANG Shu, YAN Shu, et al. An efficient wideband spectrum sensing algorithm for unmanned aerial vehicle communication networks[J]. IEEE Internet of Things Journal, 2019, 6(2): 1768–1780. doi: 10.1109/JIOT.2018.2882532
|
AQUINO G P, GUIMARÃES D A, MENDES L L, et al. Combined pre–distortion and censoring for bandwidth–efficient and energy–efficient fusion of spectrum sensing information[J]. Sensors, 2017, 17(3): 654. doi: 10.3390/s17030654
|
FAN Lisheng, LEI Xianfu, YANG Nan, et al. Secrecy cooperative networks with outdated relay selection over correlated fading channels[J]. IEEE Transactions on Vehicular Technology, 2017, 66(8): 7599–7603. doi: 10.1109/TVT.2017.2669240
|
KISHORE R, GURUGOPINATH S, MUHAIDAT S, et al. Sensing–throughput tradeoff for superior selective reporting–based spectrum sensing in energy harvesting HCRNs[J]. IEEE Transactions on Cognitive Communications and Networking, 2019, 5(2): 330–341. doi: 10.1109/TCCN.2019.2906915
|
SANTANA G M D, CRISTO R S, DEZAN C, et al. Cognitive radio for UAV communications: Opportunities and future challenges[C]. 2018 International Conference on Unmanned Aircraft Systems (ICUAS). Dallas, USA, 2018: 760–768. doi: 10.1109/ICUAS.2018.8453329.
|
SBOUI L, GHAZZAI H, REZKI Z, et al. Achievable rates of UAV–relayed cooperative cognitive radio MIMO systems[J]. IEEE Access, 2017, 5: 5190–5204. doi: 10.1109/ACCESS.2017.2695586
|
ZHENG Yi, WANG Yuwen, and MENG Fanji. Modeling and simulation of pathloss and fading for air–ground link of HAPs within a network simulator[C]. 2013 International Conference on Cyber–Enabled Distributed Computing and Knowledge Discovery. Beijing, China, 2013: 421–426. doi: 10.1109/CyberC.2013.78.
|
AL–HOURANI A, KANDEEPAN S, and LARDNER S. Optimal LAP altitude for maximum coverage[J]. IEEE Wireless Communications Letters, 2014, 3(6): 569–572. doi: 10.1109/lwc.2014.2342736
|
MOZAFFARI M, SAAD W, BENNIS M, et al. Drone small cells in the clouds: Design, deployment and performance analysis[C]. 2015 IEEE Global Communications Conference (GLOBECOM). San Diego, USA, 2015: 1–6. doi: 10.1109/GLOCOM.2015.7417609.
|
GHAZZAI H, GHORBEL M B, KADRI A, et al. Energy–efficient management of unmanned aerial vehicles for underlay cognitive radio systems[J]. IEEE Transactions on Green Communications and Networking, 2017, 1(4): 434–443. doi: 10.1109/TGCN.2017.2750721
|
LIANG Yingchang, ZENG Yonghong, PEH E C Y, et al. Sensing–throughput tradeoff for cognitive radio networks[J]. IEEE Transactions on Wireless Communications, 2008, 7(4): 1326–1337. doi: 10.1109/twc.2008.060869
|
LIU Liang, ZHANG Shuowen, and ZHANG Rui. CoMP in the Sky: UAV placement and movement optimization for multi–user communications[J]. IEEE Transactions on Communications, 2019, 67(8): 5645–5658. doi: 10.1109/TCOMM.2019.2907944
|