Citation: | Min LI, Tingting HE. An Efficient and Robust Algorithm to Generate Initial Center of Bisecting K-means for High-dimensional Big Data Based on Random Integer Triangular Matrix Mappings[J]. Journal of Electronics & Information Technology, 2021, 43(4): 948-955. doi: 10.11999/JEIT200043 |
JAIN A K. Data clustering: 50 years beyond K-means[J]. Pattern Recognition Letters, 2010, 31(8): 651–666. doi: 10.1016/j.patrec.2009.09.011
|
YANG Qiang and WU Xindong. 10 challenging problems in data mining research[J]. International Journal of Information Technology & Decision Making, 2006, 5(4): 597–604. doi: 10.1142/s0219622006002258
|
ZHAO Wanlei, DENG Chenghao, and NGO C W. K-means: A revisit[J]. Neurocomputing, 2018, 291: 195–206. doi: 10.1016/j.neucom.2018.02.072
|
KADAM P and MATE G S. Improving efficiency of similarity of document network using bisect K-means[C]. 2017 International Conference on Computing, Communication, Control and Automation, Pune, India, 2017: 1–6. doi: 10.1109/iccubea.2017.8463865.
|
WEI Zhaolan and XIA Jing. Optimal sensor placement based on bisect k-means clustering algorithm[C]. 2018 3rd International Conference on Materials Science, Machinery and Energy Engineering (MSMEE 2018), Taiyuan, China, 2018: 228–232. doi: 10.23977/msmee.2018.72138.
|
ABUAIADAH D. Using bisect K-Means clustering technique in the analysis of Arabic documents[J]. ACM Transactions on Asian and Low-Resource Language Information Processing, 2016, 15(3): 17. doi: 10.1145/2812809
|
王燕, 李晴, 张光普. 长基线/超短基线组合系统抗异常值定位技术研究[J]. 电子与信息学报, 2018, 40(11): 2578–2583. doi: 10.11999/JEIT180056
WANG Yan, LI Qing, and ZHANG Guangpu. On anti-outlier localization for integrated long baseline/ultra-short baseline systems[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2578–2583. doi: 10.11999/JEIT180056
|
STEINBACH M, KARYPIS G, and KUMAR V. A comparison of document clustering techniques[C]. KDD Workshop on Text Mining, Boston, USA, 2000: 1–20.
|
WANG Yong and HODGES J E. A comparison of document clustering algorithms[C]. The 5th International Workshop on Pattern Recognition in Information Systems, Miami, USA, 2005: 186–191. doi: 10.5220/0002557501860191.
|
BAGIROV A M, UGON J, and WEBB D. Fast modified global k-means algorithm for incremental cluster construction[J]. Pattern Recognition, 2011, 4: 866–876. doi: 10.1016/j.patcog.2010.10.018
|
JAIN A K, MURTY M N, and FLYNN P J. Data clustering: A review[J]. ACM Computing Surveys, 1999, 31(3): 264–323. doi: 10.1145/331499.331504
|
赵凤, 孙文静, 刘汉强, 等. 基于近邻搜索花授粉优化的直觉模糊聚类图像分割[J]. 电子与信息学报, 2020, 42(4): 1005–1012. doi: 10.11999/JEIT190428
ZHAO Feng, SUN Wenjing, LIU Hanqiang, et al. Intuitionistic fuzzy clustering image segmentation based on flower pollination optimization with nearest neighbor searching[J]. Journal of Electronics &Information Technology, 2020, 42(4): 1005–1012. doi: 10.11999/JEIT190428
|
WU Xindong, KUMAR V, QUINLAN J R, et al. Top 10 algorithms in data mining[J]. Knowledge and Information Systems, 2008, 14(1): 1–37. doi: 10.1007/s10115-007-0114-2.
|
WITTEN I H, FRANK E, HALL M A, et al. Data Mining: Practical Machine Learning Tools and Techniques[M]. 4th ed. Amsterdam: Elsevier, 2017: 97–98.
|
MARSLAND S. Machine Learning: An Algorithmic Perspective[M]. 2nd ed. Boca Raton: CRC Press, 2015: 197–200.
|
HAN Jiawei and KAMBER M. Data Mining: Concepts and Techniques[M]. 2nd ed. Amsterdam: Elsevier, 2006: 402–404.
|
ELKAN C. Clustering with k-means: Faster, smarter, cheaper[EB/OL]. http://www.doc88.com/p-347627347988.html, 2004.
|
KOPEC D. Classic Computer Science Problems in Python[M]. Shelter Island: Manning Publications, 2019: 117–118.
|
JREN N. The 20 newsgroups data set[EB/OL]. http://qwone.com/~jason/20Newsgroups, 2008.
|
BO P and LILLIAN L. Movie review data[EB/OL]. http://www.cs.cornell.edu/people/pabo/movie-review-data, 2020.
|
LECUN Y, CORTES C, and BURGES C J C. The MNIST database of handwritten digits[EB/OL]. http://yann.lecun.com/exdb/mnist, 2020.
|