Citation: | Shize KANG, Lixin JI, Jianpeng ZHANG. Heterogeneous Information Network Representation Learning Framework Based on Graph Attention Network[J]. Journal of Electronics & Information Technology, 2021, 43(4): 915-922. doi: 10.11999/JEIT200034 |
SHI Chuan, LI Yitong, ZHANG Jiawei, et al. A survey of heterogeneous information network analysis[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(1): 17–37. doi: 10.1109/TKDE.2016.2598561
|
于洪涛, 丁悦航, 刘树新, 等. 一种基于超节点理论的本体关系消冗算法[J]. 电子与信息学报, 2019, 41(7): 1633–1640. doi: 10.11999/JEIT180793
YU Hongtao, DING Yuehang, LIU Shuxin, et al. Eliminating structural redundancy based on super-node theory[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1633–1640. doi: 10.11999/JEIT180793
|
BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]. The 26th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2013: 2787–2795.
|
DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]. The 32nd AAAI Conference on Artificial Intelligence (AAAI-18), New Orleans, USA, 2018: 1811–1818.
|
NATHANI D, CHAUHAN J, SHARMA C, et al. Learning attention-based embeddings for relation prediction in knowledge graphs[C]. The 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 2019: 4710–4723. doi: 10.18653/v1/P19-1466.
|
DONG Yuxiao, CHAWLA N V, SWAMI A, et al. Metapath2vec: Scalable representation learning for heterogeneous networks[C]. The 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, USA, 2017: 135–144. doi: 10.1145/3097983.3098036.
|
WANG Xiao, JI Houye, SHI Chuan, et al. Heterogeneous graph attention network[C]. The World Wide Web Conference, San Francisco, USA, 2019: 2022–2032. doi: 10.1145/3308558.3313562.
|
MIKOLOV T, CHEN Kai, CORRADO G, et al. Efficient estimation of word representations in vector space[C]. The 1st International Conference on Learning Representations, Scottsdale, Arizona, 2013: 1–12.
|
SHANG Chao, TANG Yun, HUANG Jing, et al. End-to-end structure-aware convolutional networks for knowledge base completion[C]. The AAAI Conference on Artificial Intelligence, Hawaii, USA, 2019: 3060–3067. doi: 10.1609/aaai.v33i01.33013060.
|
VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]. International Conference On Learning Representations, Vancouver, Canada, 2018: 1–12.
|
NGUYEN D Q, NGUYEN T D, NGUYEN D Q, et al. A novel embedding model for knowledge base completion based on convolutional neural network[C]. 2018 Conference of the North American Chapter of the Association for Computational Linguistics, New Orleans, USA, 2018: 327–333. doi: 10.18653/v1/N18-2053.
|
PEROZZI B, AL-RFOU R, SKIENA S, et al. DeepWalk: Online learning of social representations[C]. The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, USA, 2014: 701–710. doi: 10.1145/2623330.2623732.
|
SHANG Jingbo, QU Meng, LIU Jialu, et al. Meta-path guided embedding for similarity search in large-scale heterogeneous information networks[J]. arXiv preprint arXiv: 1610.09769v1, 2016.
|
KINGMA D P and BA J. Adam: A method for stochastic optimization[C]. The 3rd International Conference for Learning Representations, San Diego, USA, 2015: 1–15.
|