Citation: | Hao CHEN, Guang LI, Yang LIU, Yongqian QIANG. A Glioma Detection and Segmentation Method in MR Imaging[J]. Journal of Electronics & Information Technology, 2021, 43(4): 992-1002. doi: 10.11999/JEIT200033 |
FURNARI F B, FENTON T, BACHOO R M, et al. Malignant astrocytic glioma: Genetics, biology, and paths to treatment[J]. Genes & Development, 2007, 21(21): 2683–2710. doi: 10.1101/gad.1596707
|
OHGAKI H and KLEIHUES P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas[J]. Journal of Neuropathology & Experimental Neurology, 2005, 64(6): 479–489.
|
SACHDEVA J, KUMAR V, GUPTA I, et al. Segmentation, feature extraction, and multiclass brain tumor classification[J]. Journal of Digital Imaging, 2013, 26(6): 1141–1150. doi: 10.1007/s10278-013-9600-0
|
SOLTANINEJAD M, YANG Guang, LAMBROU T, et al. Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI[J]. International Journal of Computer Assisted Radiology and Surgery, 2017, 12(2): 183–203. doi: 10.1007/s11548-016-1483-3
|
SONG Guoli, HUANG Zheng, ZHAO Yiwen, et al. A Noninvasive system for the automatic detection of gliomas based on hybrid features and PSO-KSVM[J]. IEEE Access, 2019, 7: 13842–13855. doi: 10.1109/ACCESS.2019.2894435
|
CAO Zhantao, DUAN Lixin, YANG Guowu, et al. Breast tumor detection in ultrasound images using deep learning[C]. The 3rd International Workshop on Patch-based Techniques in Medical Imaging, Quebec City, Canada, 2017: 121–128.
|
SHKOLYAR E, JIA Xiao, CHANG T C, et al. Augmented bladder tumor detection using deep learning[J]. European Urology, 2019, 76(6): 714–718. doi: 10.1016/j.eururo.2019.08.032
|
ÖZYURT F, SERT E, and AVCI D. An expert system for brain tumor detection: Fuzzy c-means with super resolution and convolutional neural network with extreme learning machine[J]. Medical Hypotheses, 2019, 134: 109433. doi: 10.1016/j.mehy.2019.109433
|
KUMAR S, NEGI A, SINGH J H, et al. Brain tumor segmentation and classification using MRI images via fully convolution neural networks[C]. 2018 International Conference on Advances in Computing, Communication Control and Networking, Greater Noida, India, 2018: 1178–1181.
|
ZHAO Xiaomei, WU Yihong, SONG Guidong, et al. A deep learning model integrating FCNNs and CRFs for brain tumor segmentation[J]. Medical Image Analysis, 2018, 43: 98–111. doi: 10.1016/j.media.2017.10.002
|
YANG Tiejun and SONG Jikun. An automatic brain tumor image segmentation method based on the U-Net[C]. The 2018 4th International Conference on Computer and Communications, Chengdu, China, 2018: 1600–1604.
|
AMIRI A, MAHJOUB M A, and REKIK I. Tree-based ensemble classifier learning for automatic brain glioma segmentation[J]. Neurocomputing, 2018, 313: 135–142. doi: 10.1016/j.neucom.2018.05.112
|
MUDGAL T K, GUPTA A, JAIN S, et al. Automated system for brain tumour detection and classification using eXtreme gradient boosted decision trees[C]. 2017 International Conference on Soft Computing and its Engineering Applications, Changa, India, 2017: 1–6.
|
陈忠辉, 凌献尧, 冯心欣, 等. 基于模糊c均值聚类和随机森林的短时交通状态预测方法[J]. 电子与信息学报, 2018, 40(8): 1879–1886. doi: 10.11999/JEIT171090
CHEN Zhonghui, LING Xianyao, FENG Xinxin, et al. Short-term traffic state prediction approach based on FCM and random forest[J]. Journal of Electronics &Information Technology, 2018, 40(8): 1879–1886. doi: 10.11999/JEIT171090
|
RAJAGOPAL R. Glioma brain tumor detection and segmentation using weighting random forest classifier with optimized ant colony features[J]. International Journal of Imaging Systems and Technology, 2019, 29(3): 353–359. doi: 10.1002/ima.22331
|
CHO H H and PARK H. Classification of low-grade and high-grade glioma using multi-modal image radiomics features[C]. The 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Seogwipo, South Korea, 2017: 3081–3084.
|
CHADDAD A, DANIEL P, DESROSIERS C, et al. Novel radiomic features based on joint intensity matrices for predicting glioblastoma patient survival time[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23(2): 795–804. doi: 10.1109/JBHI.2018.2825027
|
罗会兰, 卢飞, 孔繁胜. 基于区域与深度残差网络的图像语义分割[J]. 电子与信息学报, 2019, 41(11): 2777–2786. doi: 10.11999/JEIT190056
LUO Huilan, LU Fei, and KONG Fansheng. Image semantic segmentation based on region and deep residual network[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2777–2786. doi: 10.11999/JEIT190056
|
KIDO S, HIRANO Y and HASHIMOTO N. Detection and classification of lung abnormalities by use of Convolutional Neural Network (CNN) and regions with cnn features (R-CNN)[C]. 2018 International Workshop on Advanced Image Technology, Chiang Mai, Thailand, 2018: 1–4.
|
SHEN Wei, ZHOU Mu, YANG Feng, et al. Multi-scale convolutional neural networks for lung nodule classification[C]. The 24th International Conference on Information Processing in medical Imaging, Sabhal Mor Ostaig, Isle of Skye, UK, 2015: 588–599.
|
MENZE B H, JAKAB A, BAUER S, et al. The multimodal brain tumor image segmentation benchmark (BRATS)[J]. IEEE Transactions on Medical Imaging, 2015, 34(10): 1993–2014. doi: 10.1109/TMI.2014.2377694
|
CHEN Shengcong, DING Changxing, and ZHOU Chenhong. Brain tumor segmentation with label distribution learning and multi-level feature representation[C]. International Conference on Medical Image Computing and Computer-Assisted Interventions, Quebec, Canada, 2017: 50–53.
|
WANG Guotai, LI Wenqi, OURSELIN S, et al. Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks[C]. The 3rd International MICCAI Brainlesion Workshop, Quebec City, Canada, 2018: 178–190.
|
ISLAM M and REN Hongliang. Fully convolutional network with hypercolumn features for brain tumor segmentation[C]. International Conference on Medical Image Computing and Computer-Assisted Interventions, Quebec, Canada, 2017: 108–115.
|
ZHOU Fan, LI Tengfei, LI Heng, et al. TP-CNN: A two-phase convolution neural network based model to do automatic brain tumor segmentation by using BRATS 2017 data[C]. International Conference on Medical Image Computing and Computer-Assisted Interventions, Quebec, Canada, 2017: 334–341.
|