Advanced Search
Volume 43 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
Junyan LU, Hongguang JIA, Fang GAO, Wentao LI, Qing LU. Reconstruction of Digital Surface Model of Single-view Remote Sensing Image by Semantic Segmentation Network[J]. Journal of Electronics & Information Technology, 2021, 43(4): 974-981. doi: 10.11999/JEIT200031
Citation: Junyan LU, Hongguang JIA, Fang GAO, Wentao LI, Qing LU. Reconstruction of Digital Surface Model of Single-view Remote Sensing Image by Semantic Segmentation Network[J]. Journal of Electronics & Information Technology, 2021, 43(4): 974-981. doi: 10.11999/JEIT200031

Reconstruction of Digital Surface Model of Single-view Remote Sensing Image by Semantic Segmentation Network

doi: 10.11999/JEIT200031
Funds:  The Key Technologies of Jilin Province (20170201006GX), The Major Science and Technology Research Project of Changchun Science and Technology Bureau (SA13RP2018040101); The Key Science and Technology Research Project of Jilin Province Science and Technology Department (20180201109GX)
  • Received Date: 2020-01-09
  • Rev Recd Date: 2020-09-10
  • Available Online: 2020-09-14
  • Publish Date: 2021-04-20
  • A novel method for Digital Surface Model (DSM) reconstruction of single-view remote sensing image is proposed which only relies on light detection and ranging data. Based on deep learning technology, a semantic segmentation network with an encode-decode structure is designed. The network uses Multi-scale Residual Fusion Encode and Decode (MRFED) blocks to extract semantic information from the input image, and then predicts the height value pixel by pixel, as well as adopts a strategy of skip connections with feature maps to preserves the detailed features and structural information of the input image. The model is trained and tested on a public dataset of remote sensing images containing DSM data. Experiments show that, the Mean Absolute Error (MAE) between DSM reconstruction results and true values is 2.1e-02, the Root Mean Square Error (RMSE) is 3.8e-02, and the Structural SIMilarity (SSIM) is 92.89%, which are all better than the classic deep learning semantic segmentation networks. Experiments confirm that the method can effectively reconstruct the DSM of single-view remote sensing images with high accuracy, as well as the structure of feature distribution.
  • loading
  • AUDEBERT N, LE SAUX B, and LEFÈVREY S. Fusion of heterogeneous data in convolutional networks for urban semantic labeling[C]. 2017 Joint Urban Remote Sensing Event, Dubai, United Arab Emirates, 2017: 1–4. doi: 10.1109/jurse.2017.7924566.
    QIN Rongjun, HUANG Xin, GRUEN A, et al. Object-based 3-D building change detection on multitemporal stereo images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(5): 2125–2137. doi: 10.1109/jstars.2015.2424275
    QIN Rongjun, TIAN Jiaojiao, and REINARTZ P. 3D change detection–approaches and applications[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 122: 41–56. doi: 10.1016/j.isprsjprs.2016.09.013
    BUADES A, COLL B, and MOREL J M. A review of image denoising algorithms, with a new one[J]. Multiscale Modeling & Simulation, 2005, 4(2): 490–530. doi: 10.1137/040616024
    LIU Guilin, REDA F A, SHIH K J, et al. Image inpainting for irregular holes using partial convolutions[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 89–105. doi: 10.1007/978-3-030-01252-6_6.
    DONG Chao, LOY C C, HE Kaiming, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295–307. doi: 10.1109/TPAMI.2015.2439281
    SHI Wenzhe, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1874–1883. doi: 10.1109/cvpr.2016.207.
    EIGEN D, PUHRSCH C, and FERGUS R. Depth map prediction from a single image using a multi-scale deep network[C]. The 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2366–2374.
    EIGEN D and FERGUS R. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 2650–2658. doi: 10.1109/iccv.2015.304.
    LIU Fayao, SHEN Chunhua, LIN Guosheng, et al. Learning depth from single monocular images using deep convolutional neural fields[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(10): 2024–2039. doi: 10.1109/tpami.2015.2505283
    SRIVASTAVA S, VOLPI M, and TUIA D. Joint height estimation and semantic labeling of monocular aerial images with CNNs[C]. 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, USA, 2017: 5173–5176. doi: 10.1109/igarss.2017.8128167.
    ZEILER M D and FERGUS R. Visualizing and understanding convolutional networks[C]. The 13th European Conference on computer Vision, Zurich, Switzerland, 2014: 818–833. doi: 10.1007/978-3-319-10590-1_53.
    MAHENDRAN A and VEDALDI A. Understanding deep image representations by inverting them[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 5188–5196. doi: 10.1109/CVPR.2015.7299155.
    LONG J, SHELHAMER E, and DARRELL T. Fully convolutional networks for semantic segmentation[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 3431–3440. doi: 10.1109/cvpr.2015.7298965.
    杨宏宇, 王峰岩. 基于深度卷积神经网络的气象雷达噪声图像语义分割方法[J]. 电子与信息学报, 2019, 41(10): 2373–2381. doi: 10.11999/JEIT190098

    YANG Hongyun and WANG Fengyan. Meteorological radar noise image semantic segmentation method based on deep convolutional neural network[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2373–2381. doi: 10.11999/JEIT190098
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/cvpr.2016.90.
    罗会兰, 卢飞, 孔繁胜. 基于区域与深度残差网络的图像语义分割[J]. 电子与信息学报, 2019, 41(11): 2777–2786. doi: 10.11999/JEIT190056

    LUO Huilan, LU Fei, and KONG Fansheng. Image semantic segmentation based on region and deep residual network[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2777–2786. doi: 10.11999/JEIT190056
    ZEILER M D, TAYLOR G W, and FERGUS R. Adaptive deconvolutional networks for mid and high level feature learning[C]. 2011 International Conference on Computer Vision, Barcelona, Spain, 2011: 2018–2025. doi: 10.1109/iccv.2011.6126474.
    GLOROT X and BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[C]. The 13th International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 2010: 249–256.
    SUTSKEVER I, MARTENS J, DAHL G, et al. On the importance of initialization and momentum in deep learning[C]. The 30th International Conference on Machine Learning, Atlanta, USA, 2013: 1139–1147.
    RONNEBERGER O, FISCHER P, and BROX T. U-net: Convolutional networks for biomedical image segmentation[C]. The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241. doi: 10.1007/978-3-319-24574-4_28.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (1402) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return