Citation: | Kuan’gang FAN, Haiyun QIU. Robust Nonnegative Least Mean Square Algorithm Based on Sigmoid Framework[J]. Journal of Electronics & Information Technology, 2021, 43(2): 349-355. doi: 10.11999/JEIT200018 |
Impulsive noise causes nonnegative algorithms to yield excessive error during iterations, which will damage the stability of the algorithm and causes performance degradation. In the paper, a NonNegative Least Mean Square algorithm based on the Sigmoid framework (SNNLMS) is proposed. The algorithm embeds the conventional nonnegative cost function into the Sigmoid framework to receive a new cost function. The new cost function has the characteristics of suppressing the impact of impulse noise. In addition, in order to enhance the robustness of the SNNLMS algorithm under sparse system identification, the Inversely-Proportional Sigmoid NonNegative Least Mean Square (IP-SNNLMS) is proposed based on the inversely-proportional function. Simulation results demonstrate that the SNNLMS algorithm effectively solves the problem of misadjustment caused by impulsive noise. IP-SNNLMS enhances the robustness of the algorithm and improves the defect of the convergence rate of the SNNLMS algorithm under the sparse system identification.
SLOCK D T M. On the convergence behavior of the LMS and the normalized LMS algorithms[J]. IEEE Transactions on Signal Processing, 1993, 41(9): 2811–2825. doi: 10.1109/78.236504
|
KANG B, YOO J, and PARK P. Bias-compensated normalised LMS algorithm with noisy input[J]. Electronics Letters, 2013, 49(8): 538–539. doi: 10.1049/el.2013.0246
|
JUNG S M and PARK P G. Normalised least-mean-square algorithm for adaptive filtering of impulsive measurement noises and noisy inputs[J]. Electronics Letters, 2013, 49(20): 1270–1272. doi: 10.1049/el.2013.2482
|
WANG Wenyuan, ZHAO Haiquan, LU Lu, et al. Bias-compensated constrained least mean square adaptive filter algorithm for noisy input and its performance analysis[J]. Digital Signal Processing, 2019, 84: 26–37. doi: 10.1016/j.dsp.2018.07.021
|
LIU Weifeng, POKHAREL P P, and PRINCIPE J C. The kernel least-mean-square algorithm[J]. IEEE Transactions on Signal Processing, 2008, 56(2): 543–554. doi: 10.1109/TSP.2007.907881
|
LIU Yuqi, SUN Chao, and JIANG Shouda. A reduced Gaussian kernel Least-Mean-Square algorithm for nonlinear adaptive signal processing[J]. Circuits, Systems, and Signal Processing, 2019, 38(1): 371–394. doi: 10.1007/s00034-018-0862-0
|
邱天爽, 杨志春, 李小兵, 等. α稳定分布下的加权平均最小p-范数算法[J]. 电子与信息学报, 2007, 29(2): 410–413.
QIU Tianshuang, YANG Zhichun, LI Xiaobing, et al. A weighted average least p-norm algorithm under alpha stable noise conditions[J]. Journal of Electronics &Information Technology, 2007, 29(2): 410–413.
|
李群生, 赵剡, 寇磊, 等. 一种基于多尺度核学习的仿射投影滤波算法[J]. 电子与信息学报, 2020, 42(4): 924–931. doi: 10.11999/JEIT190023
LI Qunsheng, ZHAO Yan, KOU Lei, et al. An affine projection algorithm with multi-scale kernels learning[J]. Journal of Electronics &Information Technology, 2020, 42(4): 924–931. doi: 10.11999/JEIT190023
|
LIN C J. On the convergence of multiplicative update algorithms for nonnegative matrix factorization[J]. IEEE Transactions on Neural Networks, 2007, 18(6): 1589–1596. doi: 10.1109/TNN.2007.895831
|
BRO R and DE JONG S. A fast non-negativity-constrained least squares algorithm[J]. Journal of Chemometrics, 1997, 11(5): 393–401. doi: 10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L
|
CHEN Jie, RICHARD C, BERMUDEZ J C M, et al. Nonnegative least-mean-square algorithm[J]. IEEE Transactions on Signal Processing, 2011, 59(11): 5225–5235. doi: 10.1109/TSP.2011.2162508
|
CHEN Jie, RICHARD C, BERMUDEZ J C M, et al. Variants of non-negative least-mean-square algorithm and convergence analysis[J]. IEEE Transactions on Signal Processing, 2014, 62(15): 3990–4005. doi: 10.1109/TSP.2014.2332440
|
CHEN Jie, BERMUDEZ J C M, and RICHARD C. Steady-state performance of non-negative least-mean-square algorithm and its variants[J]. IEEE Signal Processing Letters, 2014, 21(8): 928–932. doi: 10.1109/LSP.2014.2320944
|
CHEN Jie, RICHARD C, and BERMUDEZ J C M. Reweighted nonnegative least-mean-square algorithm[J]. Signal Processing, 2016, 128: 131–141. doi: 10.1016/j.sigpro.2016.03.017
|
SHOKROLAHI S M and JAHROMI M N. Logarithmic reweighting nonnegative least mean square algorithm[J]. Signal, Image and Video Processing, 2018, 12(1): 51–57. doi: 10.1007/s11760-017-1129-0
|
CHEN Badong, XING Lei, ZHAO Haiquan, et al. Generalized correntropy for robust adaptive filtering[J]. IEEE Transactions on Signal Processing, 2016, 64(13): 3376–3387. doi: 10.1109/TSP.2016.2539127
|
SONG Insun, PARK P, and NEWCOMB R W. A normalized least mean squares algorithm with a step-size scaler against impulsive measurement noise[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2013, 60(7): 442–445. doi: 10.1109/TCSII.2013.2258266
|
FAN Kuan’gang, QIU Haiyun, PEI Chunyang, et al. Robust non-negative least mean square algorithm based on step-size scaler against impulsive noise[J]. Advances in Difference Equations, 2020(1): 199. doi: 10.1186/s13662-020-02654-5
|
HUANG Fuyi, ZHANG Jiashu, and ZHANG Sheng. A family of robust adaptive filtering algorithms based on sigmoid cost[J]. Signal Processing, 2018, 149: 179–192. doi: 10.1016/j.sigpro.2018.03.013
|
XIONG Kui and WANG Shiyuan. Robust least mean logarithmic square adaptive filtering algorithms[J]. Journal of the Franklin Institute, 2019, 356(1): 654–674. doi: 10.1016/j.jfranklin.2018.10.019
|
代振, 王平波, 卫红凯. 非高斯背景下基于Sigmoid函数的信号检测[J]. 电子与信息学报, 2019, 41(12): 2945–2950. doi: 10.11999/JEIT190012
DAI Zhen, WANG Pingbo, and WEI Hongkai. Signal detection based on Sigmoid function in non-Gaussian noise[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2945–2950. doi: 10.11999/JEIT190012
|