Advanced Search
Volume 43 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
Haibo ZHANG, Xiangyu LIU, Kunlun JING, Kaijian LIU, Xiaofan HE. Research on NOMA-MEC-Based Offloading Strategy in Internet of Vehicles[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1072-1079. doi: 10.11999/JEIT200017
Citation: Haibo ZHANG, Xiangyu LIU, Kunlun JING, Kaijian LIU, Xiaofan HE. Research on NOMA-MEC-Based Offloading Strategy in Internet of Vehicles[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1072-1079. doi: 10.11999/JEIT200017

Research on NOMA-MEC-Based Offloading Strategy in Internet of Vehicles

doi: 10.11999/JEIT200017
Funds:  The National Natural Science Foundation of China (61801065, 61601071), The Program for Changjiang Scholars and Innovative Research Team in University (IRT16R72), The General Project on Foundation and Cutting-edge Research Plan of Chongqing (cstc2018jcyjAX0463), Chongqing Innovation and Entrepreneurship Project for Returned Chinese Scholars(cx2020059)
  • Received Date: 2020-01-03
  • Rev Recd Date: 2021-01-04
  • Available Online: 2021-01-08
  • Publish Date: 2021-04-20
  • With the rapid development of the Internet of Vehicles (IoV), the number of cars and users requesting tasks offloading is also increasing. The Mobile Edge Computing (MEC) can effectively solve the challenge of high offload transmission delays for task offloading in communication network, but there still is a problem that the channel resources are insufficient in the network model. Compared with traditional Orthogonal Multiple Access (OMA), the technology of Non-Orthogonal Multiple Access (NOMA) can service more users with task offload under the same channel resource conditions. In this paper, considering the multiple aspects of task offloading impact factor, a mixed unloading strategy based on NOMA-MEC is proposed. A game algorithm based on Deep Q-learning Network (DQN) is designed to make channel selection for vehicle users and provide an optimal power allocation strategy through multiple iterative learning of neural networks. The simulation results show that the proposed hybrid NOMA-MEC offloading strategy can effectively optimize the multi-user offloading delay and energy consumption and ensure maximize the benefits of users.
  • loading
  • MEHRABI M, YOU D, LATZKO V, et al. Device-enhanced MEC: Multi-access edge computing (MEC) aided by end device computation and caching: A survey[J]. IEEE Access, 2019, 7: 166079–166108. doi: 10.1109/ACCESS.2019.2953172
    HABIBI M A, NASIMI M, HAN Bin, et al. A comprehensive survey of RAN architectures toward 5G mobile communication system[J]. IEEE Access, 2019, 7: 70371–70421. doi: 10.1109/ACCESS.2019.2919657
    MAO Yuyi, ZHANG Jun, and LETAIEF K B. Dynamic computation offloading for mobile-edge computing with energy harvesting devices[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(12): 3590–3605. doi: 10.1109/JSAC.2016.2611964
    HU Xiaoyan, WONG K K, and YANG Kun. Wireless powered cooperation-assisted mobile edge computing[J]. IEEE Transactions on Wireless Communications, 2018, 17(4): 2375–2388. doi: 10.1109/TWC.2018.2794345
    LI Yong, JIN Depeng, HUI Pan, et al. Optimal base station scheduling for device-to-device communication underlaying cellular networks[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(1): 27–40. doi: 10.1109/JSAC.2015.2452415
    AMEMIYA K, AKIYAMA Y, KOBAYASHI K, et al. On-site evaluation of a software cellular based MEC system with downlink slicing technology[C]. The 7th IEEE International Conference on Cloud Networking (CloudNet), Tokyo, Japan, 2018: 1–7. doi: 10.1109/CloudNet.2018.8549380.
    WANG Hansong, LI Xi, JI Hong, et al. Dynamic offloading scheduling scheme for MEC-enabled vehicular networks[C]. 2018 IEEE/CIC International Conference on Communications in China (ICCC Workshops), Beijing, China, 2018: 206–210. doi: 10.1109/ICCChinaW.2018.8674508.
    张海霞, 李腆腆, 李东阳, 等. 基于车辆行为分析的智能车联网关键技术研究[J]. 电子与信息学报, 2020, 42(1): 36–49. doi: 10.11999/JEIT190820

    ZHANG Haixia, LI Tiantian, LI Dongyang, et al. Research on vehicle behavior analysis based technologies for intelligent vehicular networks[J]. Journal of Electronics &Information Technology, 2020, 42(1): 36–49. doi: 10.11999/JEIT190820
    DING Zhiguo, PENG Mugen, and POOR H V. Cooperative non-orthogonal multiple access in 5G systems[J]. IEEE Communications Letters, 2015, 19(8): 1462–1465. doi: 10.1109/LCOMM.2015.2441064
    GUI Guan, HUANG Hongji, SONG Yiwei, et al. Deep learning for an effective nonorthogonal multiple access scheme[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 8440–8450. doi: 10.1109/TVT.2018.2848294
    DING Zhiguo, FAN Pingzhi, and POOR H V. Impact of non-orthogonal multiple access on the offloading of mobile edge computing[J]. IEEE Transactions on Communications, 2019, 67(1): 375–390. doi: 10.1109/TCOMM.2018.2870894
    DING Zhiguo, NG D W K, SCHOBER R, et al. Delay minimization for NOMA-MEC offloading[J]. IEEE Signal Processing Letters, 2018, 25(12): 1875–1879. doi: 10.1109/LSP.2018.2876019
    LIU Gang, WANG Zhiqing, HU Jiewen, et al. Cooperative NOMA broadcasting/multicasting for low-latency and high-reliability 5G cellular V2X communications[J]. IEEE Internet of Things Journal, 2019, 6(5): 7828–7838. doi: 10.1109/JIOT.2019.2908415
    WEI Fanbo, ZHOU Ting, XU Tianheng, et al. Modeling and analysis of two-way relay networks: A joint mechanism using NOMA and network coding[J]. IEEE Access, 2019, 7: 152679–152689. doi: 10.1109/ACCESS.2019.2948656
    DING Zhiguo, XU Jie, DOBRE O, et al. Joint power and time allocation for NOMA–MEC offloading[J]. IEEE Transactions on Vehicular Technology, 2019, 68(6): 6207–6211. doi: 10.1109/TVT.2019.2907253
    ZHANG Haibo, WANG Zixin, and LIU Kaijian. V2X offloading and resource allocation in SDN-assisted MEC-based vehicular networks[J]. China Communications, 2020, 17(5): 266–283. doi: 10.23919/JCC.2020.05.020
    SITU Z, HO I W H, HOU Yun, et al. The feasibility of NOMA in C-V2X[C]. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Toronto, Canada, 2020: 562–567. doi: 10.1109/INFOCOMWKSHPS50562.2020.9163009.
    RABEE F A, DAVASLIOGLU K, and GITLIN R. The optimum received power levels of uplink non-orthogonal multiple access (NOMA) signals[C]. 2017 IEEE 18th Wireless and Microwave Technology Conference (WAMICON), Cocoa Beach, USA, 2017: 1–4. doi: 10.1109/WAMICON.2017.7930242.
    LI Shulei, DU Jianbo, ZHAI Daosen, et al. Task offloading, load balancing, and resource allocation in MEC networks[J]. IET Communications, 2020, 14(9): 1451–1458. doi: 10.1049/iet-com.2018.6122
    YANG Peitong, LI Lixin, LIANG Wei, et al. Latency optimization for multi-user NOMA-MEC offloading using reinforcement learning[C]. 2019 28th Wireless and Optical Communications Conference (WOCC), Beijing, China, 2019: 1–5. doi: 10.1109/WOCC.2019.8770605.
    3GPP. Study on LTE-based V2X services 14.0. 0[R]. 3GPPTR 36.885, 2016.
    LIU Ting, ZHU Zhaowei, GU Junrong, et al. Learn to offload in mobile edge computing[C]. 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, USA, 2019: 1–6. doi: 10.1109/GLOBECOM38437.2019.9013853.
    唐伦, 肖娇, 赵国繁, 等. 基于能效的NOMA蜂窝车联网动态资源分配算法[J]. 电子与信息学报, 2020, 42(2): 526–533. doi: 10.11999/JEIT190006

    TANG Lun, XIAO Jiao, ZHAO Guofan, et al. Energy efficiency based dynamic resource allocation algorithm for cellular vehicular based on non-orthogonal multiple access[J]. Journal of Electronics &Information Technology, 2020, 42(2): 526–533. doi: 10.11999/JEIT190006
    ZHU Jianyue, WANG Jiaheng, HUANG Yongming, et al. Resource allocation for hybrid NOMA MEC offloading[J]. IEEE Transactions on Wireless Communications, 2020, 19(7): 4964–4977. doi: 10.1109/TWC.2020.2988532
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (1496) PDF downloads(155) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return