Citation: | Yi CHEN, Di TANG, Wei ZOU. Android Malware Detection Based on Deep Learning: Achievements and Challenges[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2082-2094. doi: 10.11999/JEIT200009 |
CHAU M and REITH R. Smartphone market share[EB/OL]. https://www.idc.com/promo/smartphone-market-share/os, 2019.
|
Tencent Mobile Butler. Tencent mobile security lab mobile security report in the first half year of 2019[EB/OL]. https://m.qq.com/security_lab/news_detail_517.html, 2019.
|
WANG Bolun, YAO Yuanshun, SHAN S, et al. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks[C]. 2019 IEEE Symposium on Security and Privacy, San Francisco, USA, 2019: 707–723. doi: 10.1109/SP.2019.00031.
|
SAFAVIAN S R and LANDGREBE D. A survey of decision tree classifier methodology[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1991, 21(3): 660–674. doi: 10.1109/21.97458
|
SUYKENS J A K and VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293–300. doi: 10.1023/A:1018628609742
|
MCCALLUM A and NIGAM K. A comparison of event models for naive Bayes text classification[C]. AAAI-98 Workshop on Learning for Text Categorization, Madison, Isconsin, USA, 1998: 41–48.
|
王鑫, 李可, 宁晨, 等. 基于深度卷积神经网络和多核学习的遥感图像分类方法[J]. 电子与信息学报, 2019, 41(5): 1098–1105. doi: 10.11999/JEIT180628
WANG Xin, LI Ke, NING Chen, et al. Remote sensing image classification method based on deep convolution neural network and multi-kernel learning[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1098–1105. doi: 10.11999/JEIT180628
|
徐少平, 张贵珍, 李崇禧, 等. 基于深度置信网络的随机脉冲噪声快速检测算法[J]. 电子与信息学报, 2019, 41(5): 1130–1136. doi: 10.11999/JEIT180558
XU Shaoping, ZHANG Guizhen, LI Chongxi, et al. A fast random-valued impulse noise detection algorithm based on deep belief network[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1130–1136. doi: 10.11999/JEIT180558
|
杨宏宇, 王峰岩. 基于深度卷积神经网络的气象雷达噪声图像语义分割方法[J]. 电子与信息学报, 2019, 41(10): 2373–2381. doi: 10.11999/JEIT190098
YANG Hongyun and WANG Fengyan. Meteorological radar noise image semantic segmentation method based on deep convolutional neural network[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2373–2381. doi: 10.11999/JEIT190098
|
STATISTA. Number of available applications in the Google Play Store from December 2009 to June 2020[EB/OL]. https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/, 2019.
|
KIM T, KANG B, RHO M, et al. A multimodal deep learning method for Android malware detection using various features[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(3): 773–788. doi: 10.1109/TIFS.2018.2866319
|
YUAN Zhenlong, LU Yongqiang, WANG Zhaoguo, et al. Droid-sec: Deep learning in android malware detection[C]. 2014 ACM Conference on SIGCOMM, Chicago, USA, 2014: 371–372. doi: 10.1145/2619239.2631434.
|
XIAO Xi, WANG Zhenlong, LI Qing, et al. Back-propagation neural network on Markov chains from system call sequences: A new approach for detecting Android malware with system call sequences[J]. IET Information Security, 2017, 11(1): 8–15. doi: 10.1049/iet-ifs.2015.0211
|
NIX R and ZHANG Jian. Classification of Android apps and malware using deep neural networks[C]. 2017 International Joint Conference on Neural Networks, Anchorage, USA, 2017: 1871–1878. doi: 10.1109/IJCNN.2017.7966078.
|
HUANG Na, XU Ming, ZHENG Ning, et al. Deep android malware classification with API-based feature graph[C]. The 18th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/13th IEEE International Conference on Big Data Science and Engineering, Rotorua, New Zealand, 2019: 296–303. doi: 10.1109/TrustCom/BigDataSE.2019.00047.
|
ABDERRAHMANE A, ADNANE G, YACINE C, et al. Android malware detection based on system calls analysis and CNN classification[C]. 2019 IEEE Wireless Communications and Networking Conference Workshop, Marrakech, Morocco, 2019: 1–6. doi: 10.1109/WCNCW.2019.8902627.
|
WANG Wei, ZHAO Mengxue, and WANG Jigang. Effective android malware detection with a hybrid model based on deep autoencoder and convolutional neural network[J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(8): 3035–3043. doi: 10.1007/s12652-018-0803-6
|
XIAO Xi, ZHANG Shaofeng, MERCALDO F, et al. Android malware detection based on system call sequences and LSTM[J]. Multimedia Tools and Applications, 2019, 78(4): 3979–3999. doi: 10.1007/s11042-017-5104-0
|
YUAN Zhenlong, LU Yongqiang, and XUE Yibo. Droiddetector: Android malware characterization and detection using deep learning[J]. Tsinghua Science and Technology, 2016, 21(1): 114–123. doi: 10.1109/TST.2016.7399288
|
MCLAUGHLIN N, MARTINEZ DEL RINCON J, KANG B, et al. Deep android malware detection[C]. The 7th ACM on Conference on Data and Application Security and Privacy, Scottsdale, USA, 2017: 301–308. doi: 10.1145/3029806.3029823.
|
NAWAY A and LI Yuancheng. Using deep neural network for Android malware detection[EB/OL]. https://arxiv.org/pdf/1904.00736, 2019.
|
WANG Zhiqiang, LI Gefei, CHI Yaping, et al. Android malware detection based on convolutional neural networks[C]. The 3rd International Conference on Computer Science and Application Engineering, Sanya, China, 2019: 1–151. doi: 10.1145/3331453.3361306.
|
SABHADIYA S, BARAD J, and GHEEWALA J. Android malware detection using deep learning[C]. The 3rd International Conference on Trends in Electronics and Informatics, Tirunelveli, India, 2019: 1254–1260. doi: 10.1109/ICOEI.2019.8862633.
|
MELISSA. VirusShare. Com-because sharing is caring[EB/OL]. https://virusshare.com, 2019.
|
ALLIX K, BISSYANDÉ T F, KLEIN J, et al. Androzoo: Collecting millions of android apps for the research community[C]. The 13th IEEE/ACM Working Conference on Mining Software Repositories, Austin, TX, USA, 2016: 468–471.
|
WEI Fengguo, LI Yuping, ROY S, et al. Deep ground truth analysis of current android malware[C]. The 14th International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, Bonn, Germany, 2017: 252–276. doi: 10.1007/978-3-319-60876-1.
|
MILAPARKOUR. Contagio mobile mobile malware mini dump[EB/OL]. http://contagiominidump.blogspot.com, 2019.
|
ARP D, SPREITZENBARTH M, HUBNER M, et al. Drebin: Effective and explainable detection of android malware in your pocket[C]. The 21st Annual Network and Distributed System Security Symposium, San Diego, California, USA, 2014: 23–26. doi: 10.14722/ndss.2014.23247.
|
KADIR A F A, STAKHANOVA N, and GHORBANI A A. Android botnets: What URLs are telling us[C]. The 9th International Conference on Network and System Security, New York, NY, 2015: 78–79. doi: 10.1007/978-3-319-25645-0_6.
|
ZHOU Yajin and JIANG Xuxian. Dissecting android malware: Characterization and evolution[C]. 2012 IEEE Symposium on Security and Privacy, San Francisco, USA, 2012: 95–109. doi: 10.1109/SP.2012.16.
|
YE Yanfang, HOU Shifu, CHEN Lingwei, et al. Out-of-sample node representation learning for heterogeneous graph in real-time android malware detection[C]. The 28th International Joint Conference on Artificial Intelligence, Macao, China, 2019: 4150–4156. doi: 10.24963/ijcai.2019/576.
|
ALZAYLAEE M K, YERIMA S Y, and SEZER S. DL-Droid: Deep learning based android malware detection using real devices[J]. Computers & Security, 2020, 89: 101663. doi: 10.1016/j.cose.2019.101663
|
HOU Shifu, SAAS A, CHEN Lifei, et al. Deep4MalDroid: A deep learning framework for android malware detection based on Linux kernel system call graphs[C]. 2016 IEEE/WIC/ACM International Conference on Web Intelligence Workshops, Omaha, USA, 2016: 104–111. doi: 10.1109/WIW.2016.040.
|
HOU Shifu, SAAS A, YE Yanfang, et al. Droiddelver: An android malware detection system using deep belief network based on API call blocks[C]. WAIM 2016 International Conference on Web-Age Information Management, Nanchang, China, 2016: 54–55. doi: 10.1007/978-3-319-47121-1_5.
|
HUANG T H D and KAO H Y. R2-D2: Color-inspired convolutional neural network (CNN)-based android malware detections[C]. 2018 IEEE International Conference on Big Data, Seattle, USA, 2018: 2633–2642. doi: 10.1109/BigData.2018.8622324.
|
NAUMAN M, TANVEER T A, KHAN S, et al. Deep neural architectures for large scale android malware analysis[J]. Cluster Computing, 2018, 21(1): 569–588. doi: 10.1007/s10586-017-0944-y
|
DUC N V and GIANG P T. NADM: Neural network for Android detection malware[C]. The 9th International Symposium on Information and Communication Technology, Danang City, Vietnam, 2018: 449–455. doi: 10.1145/3287921.3287977.
|
AAFER Y, DU WENLIANG, and YIN Heng. Droidapiminer: Mining API-level features for robust malware detection in android[C]. The 9th International Conference on Security and Privacy in Communication Systems, Sydney, Australia, 2013: 86–103. doi: 10.1007/978-3-319-04283-1_6.
|
PEKTAŞ A and ACARMAN T. Deep learning for effective Android malware detection using API call graph embeddings[J]. Soft Computing, 2020, 24(2): 1027–1043. doi: 10.1007/s00500-019-03940-5
|
SUN Yizhou and HAN Jiawei. Mining heterogeneous information networks: Principles and methodologies[J]. Synthesis Lectures on Data Mining and Knowledge Discovery, 2012, 3(2): 1–159. doi: 10.2200/S00433ED1V01Y201207DMK005
|
FAN Yujie, HOU Shifu, ZHANG Yiming, et al. Gotcha-sly malware!: Scorpion a metagraph2vec based malware detection system[C]. The 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 2018: 253–262. doi: 10.1145/3219819.3219862.
|
DONG Yuxiao, CHAWLA N V, and SWAMI A. Metapath2vec: Scalable representation learning for heterogeneous networks[C]. The 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Canada, 2017: 135–144. doi: 10.1145/3097983.3098036.
|
FU Taoyang, LEE W C, and LEI Zhen. Hin2vec: Explore meta-paths in heterogeneous information networks for representation learning[C]. 2017 ACM on Conference on Information and Knowledge Management, Singapore, 2017: 1797–1806. doi: 10.1145/3132847.3132953.
|
MA Zhuo, GE Haoran, LIU Yang, et al. A combination method for Android malware detection based on control flow graphs and machine learning algorithms[J]. IEEE Access, 2019, 7: 21235–21245. doi: 10.1109/ACCESS.2019.2896003
|
GEORGE R C and JAIN A K. Markov random field texture models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1983, PAMI-5(1): 25–39. doi: 10.1109/TPAMI.1983.4767341
|
CSÁJI B C. Approximation with artificial neural networks[D]. [Master dissertation], Eotvos Loránd University, 2001: 7.
|
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1106–1114.
|
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791
|
SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. The 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9. doi: 10.1109/CVPR.2015.7298594.
|
BERGSTRA J, BARDENET R, BENGIO Y, et al. Algorithms for hyper-parameter optimization[C]. The 25th Annual Conference on Neural Information Processing Systems 2011, Granada, Spain, 2011: 2546–2554.
|
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2818–2826. doi: 10.1109/CVPR.2016.308.
|
HOCHREITER S and SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735–1780. doi: 10.1162/neco.1997.9.8.1735
|
MNIH V, HEESS N, GRAVES A, et al. Recurrent models of visual attention[C]. The 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2204–2212.
|
SALAKHUTDINOV R and MURRAY I. On the quantitative analysis of deep belief networks[C]. The 25th International Conference on Machine Learning, Helsinki, Finland, 2008: 872–879. doi: 10.1145/1390156.1390266.
|
ALONSO J M and CHEN Yao. Receptive field[J]. Scholarpedia, 2009, 4(1): 5393. doi: 10.4249/scholarpedia.5393
|
ALLEN F E. Control flow analysis[J]. ACM SIGPLAN Notices, 1970, 5(7): 1–19. doi: 10.1145/390013.808479
|
SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61–80. doi: 10.1109/TNN.2008.2005605
|
JIANG Bo, ZHANG Ziyan, LIN Doudou, et al. Semi-supervised learning with graph learning-convolutional networks[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 11305–11312. doi: 10.1109/CVPR.2019.01157.
|
MARON H, BEN-HAMU H, SERVIANSKY H, et al. Provably powerful graph networks[C]. The 33rd Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 2153–2164.
|
GORI M, MONFARDINI G, and SCARSELLI F. A new model for learning in graph domains[C]. 2005 IEEE International Joint Conference on Neural Networks, Montreal, Canada, 2005: 729–734.
|
WU Dongjie, MAO C H, WEI T E, et al. Droidmat: Android malware detection through manifest and API calls tracing[C]. The 7th Asia Joint Conference on Information Security, Tokyo, Japan, 2012: 62–69. doi: 10.1109/AsiaJCIS.2012.18.
|
HUANG C Y, TSAI Y T, and HSU C H. Performance evaluation on permission-based detection for android malware[C]. International Computer Symposium ICS 2012 Held at Hualien, Taipei, China, 2013: 111–120. doi: 10.1007/978-3-642-35473-1_12.
|
ZHANG Mu, DUAN Yue, YIN Heng, et al. Semantics-aware android malware classification using weighted contextual API dependency graphs[C]. 2014 ACM SIGSAC Conference on Computer and Communications Security, Scottsdale, USA, 2014: 1105–1116. doi: 10.1145/2660267.2660359.
|
FEREIDOONI H, CONTI M, YAO Danfeng, et al. ANASTASIA: Android malware detection using static analysis of applications[C]. The 8th IFIP International Conference on New Technologies, Mobility and Security, Larnaca, Cyprus, 2016: 1–5. doi: 10.1109/NTMS.2016.7792435.
|
YANG Chao, XU Zhaoyan, GU Guofei, et al. Droidminer: Automated mining and characterization of fine-grained malicious behaviors in android applications[C]. The 19th European Symposium on Research in Computer Security, Wroclaw, Poland, 2014: 163–182. doi: 10.1007/978-3-319-11203-9_10.
|
DIMJAŠEVIĆ M, ATZENI S, UGRINA I, et al. Evaluation of android malware detection based on system calls[C]. 2016 ACM on International Workshop on Security and Privacy Analytics, New Orleans, USA, 2016: 1–8. doi: 10.1145/2875475.2875487.
|
YERIMA S Y, SEZER S, and MUTTIK I. High accuracy android malware detection using ensemble learning[J]. IET Information Security, 2015, 9(6): 313–320. doi: 10.1049/iet-ifs.2014.0099
|
JEROME Q, ALLIX K, STATE R, et al. Using opcode-sequences to detect malicious Android applications[C]. 2014 IEEE International Conference on Communications, Sydney, Australia, 2014: 914–919. doi: 10.1109/ICC.2014.6883436.
|
YERIMA S Y, SEZER S, MCWILLIAMS G, et al. A new android malware detection approach using Bayesian classification[C]. The 27th IEEE International Conference on Advanced Information Networking and Applications, Barcelona, Spain, 2013: 121–128. doi: 10.1109/AINA.2013.88.
|
POWERS D M W. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness & correlation[J]. Journal of Machine Learning Technologies, 2011, 2(1): 37–63.
|