Advanced Search
Volume 42 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
Jia YAN, Jia YAN, Chujiang NIE, Purui SU. Method for Generating Malicious Code Adversarial Samples Based on Genetic Algorithm[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2126-2133. doi: 10.11999/JEIT191059
Citation: Jia YAN, Jia YAN, Chujiang NIE, Purui SU. Method for Generating Malicious Code Adversarial Samples Based on Genetic Algorithm[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2126-2133. doi: 10.11999/JEIT191059

Method for Generating Malicious Code Adversarial Samples Based on Genetic Algorithm

doi: 10.11999/JEIT191059
Funds:  The National Natural Science Foundation of China (61902384, U1836117, U1836113)
  • Received Date: 2019-12-31
  • Rev Recd Date: 2020-05-30
  • Available Online: 2020-07-21
  • Publish Date: 2020-09-27
  • Machine learning is widely used in malicious code detection and plays an important role in malicious code detection products. Constructing adversarial samples for malicious code detection machine learning models is the key to discovering defects in malicious code detection models, evaluating and improving malicious code detection systems. This paper proposes a method for generating malicious code adversarial samples based on genetic algorithms. The generated samples combat effectively the malicious code detection model based on machine learning, while ensuring the consistency of the executable and malicious behavior of malicious code samples, and improving effectively the authenticity of the generated adversarial samples and the accuracy of the model adversarial evaluation are presented. The experiments show that the proposed method of generating adversarial samples reduces the detection accuracy of the MalConv malicious code detection model by 14.65%, and can directly interfere with four commercial machine-based malicious code detection engines in VirusTotal. Among them, the accuracy rate of Cylance detection is only 53.55%.
  • loading
  • LANDAGE J and WANKHADE M P. Malware and malware detection techniques: A survey[J]. International Journal of Engineering Research & Technology, 2013, 2(12): 61–68.
    SAXE J and BERLIN K. Deep neural network based malware detection using two dimensional binary program features[C]. The 10th International Conference on Malicious and Unwanted Software (MALWARE), Fajardo, USA, 2015: 11–20. doi: 10.1109/MALWARE.2015.7413680.
    ARP D, SPREITZENBARTH M, HUBNER M, et al. Drebin: Effective and explainable detection of android malware in your pocket[C]. Network and Distributed System Security Symposium, San Diego, USA, 2014: 23–26. doi: 10.14722/ndss.2014.23247.
    RAFF E, SYLVESTER J, and NICHOLAS C. Learning the PE header, malware detection with minimal domain knowledge[C]. The 10th ACM Workshop on Artificial Intelligence and Security, Dallas, USA, 2017: 121–132. doi: 10.1145/3128572.3140442.
    RAFF E, ZAK R, COX R, et al. An investigation of byte n-gram features for malware classification[J]. Journal of Computer Virology and Hacking Techniques, 2018, 14(1): 1–20. doi: 10.1007/s11416-016-0283-1
    Sophos Inc. Sophos central migration tool articles, documentation and resources[EB/OL]. https://community.sophos.com/kb/en-us/122264#Product%20Information, 2020.
    梁光辉, 庞建民, 单征. 基于代码进化的恶意代码沙箱规避检测技术研究[J]. 电子与信息学报, 2019, 41(2): 341–347. doi: 10.11999/JEIT180257

    LIANG Guanghui, PANG Jianmin, and SHAN Zheng. Malware sandbox evasion detection based on code evolution[J]. Journal of Electronics &Information Technology, 2019, 41(2): 341–347. doi: 10.11999/JEIT180257
    GROSSE K, PAPERNOT N, MANOHARAN P, et al. Adversarial perturbations against deep neural networks for malware classification[J]. arXiv, 2016, 1606.04435.
    XU Weilin, QI Yanjun, and EVANS D. Automatically evading classifiers[C]. The 23rd Annual Network and Distributed System Security Symposium, San Diego, USA, 2016: 21–24. doi: 10.14722/ndss.2016.23115.
    HU Weiwei and TAN Ying. Generating adversarial malware examples for black-box attacks based on GAN[J]. arXiv, 2017, 1702.05983.
    HU Weiwei and TAN Ying. Black-box attacks against RNN based malware detection algorithms[C]. The Workshops of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018.
    RAFF E, BARKER J, SYLVESTER J, et al. Malware detection by eating a whole exe[C]. The Workshops of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018: 268–276.
    TOTAL V. VirusTotal-free online virus, malware and url scanner[EB/OL]. https//www.virustotal.com/en, 2012.
    PASCANU R, STOKES J W, SANOSSIAN H, et al. Malware classification with recurrent networks[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia, 2015: 1916–1920. doi: 10.1109/ICASSP.2015.7178304.
    KOLOSNJAJI B, ZARRAS A, WEBSTER G, et al. Deep learning for classification of malware system call sequences[C]. The 29th Australasian Joint Conference on Artificial Intelligence, Hobart, Australia, 2016: 137–149. doi: 10.1007/978-3-319-50127-7_11.
    HUANG Wenyi and STOKES J W. MtNet: A multi-task neural network for dynamic malware classification[C]. The 13th International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, San Sebastián, Spain, 2016: 399–418. doi: 10.1007/978-3-319-40667-1_20.
    MANNING C D, RAGHAVAN P, and SCHÜTZE H. Introduction to Information Retrieval[M]. Cambridge: Cambridge University Press, 2008.
    HAN K S, LIM J H, KANG B, et al. Malware analysis using visualized images and entropy graphs[J]. International Journal of Information Security, 2015, 14(1): 1–14. doi: 10.1007/s10207-014-0242-0
    KANCHERLA K and MUKKAMALA S. Image visualization based malware detection[C]. 2013 IEEE Symposium on Computational Intelligence in Cyber Security (CICS), Singapore, 2013: 40–44. doi: 10.1109/CICYBS.2013.6597204.
    LIU Xinbo, LIN Yaping, LI He, et al. A novel method for malware detection on ML-based visualization technique[J]. Computers & Security, 2020, 89: 101682. doi: 10.1016/j.cose.2019.101682
    Skylight. Cylance, I kill you![ EB/OL]. https://skylightcyber.com/2019/07/18/cylance-i-kill-you/, 2019.
    MOHURLE S and PATIL M. A brief study of wannacry threat: Ransomware attack 2017[J]. International Journal of Advanced Research in Computer Science, 2017, 8(5): 1938–1940. doi: 10.26483/ijarcs.v8i5.4021
    DANG Hung, HUANG Yue, and CHANG E C. Evading classifiers by morphing in the dark[C]. 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, USA, 2017: 119–133. doi: 10.1145/3133956.3133978.
    戚利. Windows PE权威指南[M]. 北京: 机械工业出版社, 2011: 67–68.

    QI Li. Windows PE: The Definitive Guide[M]. Beijing: Machinery Industry Press, 2011: 67–68.
    KOZA J R. Genetic Programming II: Automatic Discovery of Reusable Subprograms[M]. Cambridge, MA, USA: MIT Press, 1994: 32.
    Cuckoo Sandbox. Cuckoo Sandbox–Automated malware analysis[EB/OL]. http://www.cuckoosandbox.org, 2017.
    BANON S. Elastic endpoint security[EB/OL]. https://www.elastic.co/cn/blog/introducing-elastic-endpoint-security, 2019.
    Trapmine Inc. TRAPMINE integrates machine learning engine into VirusTotal[EB/OL]. https://trapmine.com/blog/trapmine-machine-learning-virustotal/, 2018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(4)

    Article Metrics

    Article views (2955) PDF downloads(254) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return