Citation: | Yichao ZHANG, Tianyang ZHOU, Junhu ZHU, Qingxian WANG. Domain-Independent Intelligent Planning Technology and Its Application to Automated Penetration Testing Oriented Attack Path Discovery[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2095-2107. doi: 10.11999/JEIT191056 |
KRUTZ R L and VINES R D. The CISSP and CAP Prep guide: Platinum Edition[M]. New Jersey: Wiley, 2007.
|
STEFINKO Y, PISKOZUB A, and BANAKH R. Manual and automated penetration testing. Benefits and drawbacks. Modern tendency[C]. The 13th International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science, Lviv, Ukraine, 2016: 488–491. doi: 10.1109/tcset.2016.7452095.
|
ABU-DABASEH F and ALSHAMMARI E. Automated penetration testing: An overview[C]. The 4th International Conference on Natural Language Computing, Copenhagen, Denmark, 2018: 121–129.
|
MCDERMOTT J P. Attack net penetration testing[C]. 2000 Workshop on New Security Paradigms, Ballycotton, Ireland, 2001: 15–21. doi: 10.1145/366173.366183.
|
诸葛建伟, 陈力波, 孙松柏, 等. Metasploit渗透测试魔鬼训练营[M]. 北京: 机械工业出版社, 2013: 3–4.
ZHUGE Jianwei, CHEN Libo, SUN Songbai, et al. Penetration Testing Devil Training Camp Based on Metasploit[M]. Beijing: China Machine Press, 2013: 3–4.
|
POLATIDIS N, PAVLIDIS M, and MOURATIDIS H. Cyber-attack path discovery in a dynamic supply chain maritime risk management system[J]. Computer Standards & Interfaces, 2018, 56: 74–82. doi: 10.1016/j.csi.2017.09.006
|
李庆华, 尤越, 沐雅琪, 等. 一种针对大型凹型障碍物的组合导航算法[J]. 电子与信息学报, 2020, 42(4): 917–923. doi: 10.11999/JEIT190179
LI Qinghua, YOU Yue, MU Yaqi, et al. Integrated navigation algorithm for large concave obstacles[J]. Journal of Electronics &Information Technology, 2020, 42(4): 917–923. doi: 10.11999/JEIT190179
|
BIALEK Ł, DUNIN-KĘPLICZ B, and SZAŁAS A. A paraconsistent approach to actions in informationally complex environments[J]. Annals of Mathematics and Artificial Intelligence, 2019, 86(4): 231–255. doi: 10.1007/s10472-019-09627-9
|
AMMANN P, WIJESEKERA D, and KAUSHIK S. Scalable, Graph-based network vulnerability analysis[C]. The 9th ACM Conference on Computer and Communications Security, Washington, USA, 2002: 217–224. doi: 10.1145/586110.586140.
|
CHEN Feng, LIU Dehui, ZHANG Yi, et al. A scalable approach to analyzing network security using compact attack graphs[J]. Journal of Networks, 2010, 5(5): 543–550. doi: 10.4304/jnw.5.5.543-550
|
OU Xinming, GOVINDAVAJHALA S, and APPEL A W. MulVAL: A logic-based network security analyzer[C]. The 14th Conference on USENIX Security Symposium, Baltimore, USA, 2005: 113–128.
|
WANG Lingyu, YAO Chao, SINGHAL A, et al. Interactive analysis of attack graphs using relational queries[C]. The 20th Annual Conference on Data and Applications Security and Privacy, Sophia Antipolis, France, 2006: 119–132. doi: 10.1007/11805588_9.
|
LI Wei, VAUGHN R B, and DANDASS Y S. An approach to model network exploitations using exploitation graphs[J] Simulation, 2006, 82(8): 523–541. doi: 10.1177/0037549706072046.
|
MAHDAVI A and CARVALHO M. Optimal trajectory and schedule planning for autonomous guided vehicles in flexible manufacturing system[C]. The 2nd IEEE International Conference on Robotic Computing, Laguna Hills, USA, 2018: 167–172. doi: 10.1109/irc.2018.00034.
|
MA Xiaobai, JIAO Ziyuan, WANG Zhenkai, et al. 3-D decentralized prioritized motion planning and coordination for high-density operations of micro aerial vehicles[J]. IEEE Transactions on Control Systems Technology, 2018, 26(3): 939–953. doi: 10.1109/tcst.2017.2699165
|
ZANG Yichao, ZHOU Tianyang, GE Xiaoyue, et al. An improved attack path discovery algorithm through compact graph planning[J]. IEEE Access, 2019, 7: 59346–59356. doi: 10.1109/access.2019.2915091
|
BODDY M S, GOHDE J, HAIGH T, et al. Course of action generation for cyber security using classical planning[C]. The 15th International Conference on Automated Planning and Scheduling, Monterey, USA, 2005: 12–21.
|
GARRETT C R, LOZANO-PÉREZ T, and KAELBLING L P. FFRob: Leveraging symbolic planning for efficient task and motion planning[J]. The International Journal of Robotics Research, 2018, 37(1): 104–136. doi: 10.1177/0278364917739114
|
KAUTZ H A and SELMAN B. Unifying SAT-based and graph-based planning[C]. The 16th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 1999: 318–325.
|
DO M B and KAMBHAMPATI S. Planning as constraint satisfaction: Solving the planning graph by compiling it into CSP[J]. Artificial Intelligence, 2001, 132(2): 151–182. doi: 10.1016/s0004-3702(01)00128-x
|
BAIOLETTI M, MARCUGINI S, and MILANI A. DPPlan: An algorithm for fast solutions extraction from a planning graph[C]. The 5th International Conference on Artificial Intelligence Planning Systems, Breckenridge, USA, 2000: 13–21.
|
BARRETT A and WELD D S. Partial-order planning: Evaluating possible efficiency gains[J]. Artificial Intelligence, 1994, 67(1): 71–112. doi: 10.1016/0004-3702(94)90012-4
|
NGUYEN X L and KAMBHAMPATI S. Reviving partial order planning[C]. The 17th International Joint Conference on Artificial Intelligence, Seattle, USA. 2001: 459–466.
|
YOUNES H L S and SIMMONS R G. VHPOP: Versatile heuristic partial order planner[J]. Journal of Artificial Intelligence Research, 2003, 20: 405–430. doi: 10.1613/jair.1136
|
COLES A J, COLES A, FOX M, et al. Forward-chaining partial-order planning[C]. The 20th International Conference on Automated Planning and Scheduling, Toronto, Canada, 2010: 42–49.
|
BOUTILIER C and BRAFMAN R I. Partial-order planning with concurrent interacting actions[J]. Journal of Artificial Intelligence Research, 2001, 14: 105–136. doi: 10.1613/jair.740
|
MOHR F, WEVER M, and HÜLLERMEIER E. ML-Plan: Automated machine learning via hierarchical planning[J]. Machine Learning, 2018, 107(8–10): 1495–1515. doi: 10.1007/s10994-018-5735-z
|
DE SILVA L, PADGHAM L, and SARDINA S. HTN-like solutions for classical planning problems: An application to BDI agent systems[J]. Theoretical Computer Science, 2019, 763: 12–37. doi: 10.1016/j.tcs.2019.01.034
|
SOHN S, OH J, and LEE H. Hierarchical reinforcement learning for zero-shot generalization with subtask dependencies[C]. The 32nd Conference on Neural Information Processing Systems, Montréal, Canada, 2018: 7156–7166.
|
MU Chengpo and LI Yingjiu. An intrusion response decision-making model based on hierarchical task network planning[J]. Expert Systems with Applications, 2010, 37(3): 2465–2472. doi: 10.1016/j.eswa.2009.07.079
|
ONTAÑÓN S and BURO M. Adversarial hierarchical-task network planning for complex real-time games[C]. The 24th International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, 2015: 1652–1658.
|
FU JICHENG, NG V, BASTANI F B, et al. Simple and fast strong cyclic planning for fully-observable nondeterministic planning problems[C]. The 22nd International Joint Conference on Artificial Intelligence, Barcelona, Spain, 2011: 1949–1954. doi: 10.1007/s10472-016-9517-7.
|
KOLOBOV A, MAUSAM M, and Weld D S. LRTDP versus UCT for online probabilistic planning[C]. The 26th AAAI Conference on Artificial Intelligence, Toronto, Canada, 2012: 1786–1792.
|
YOON S, FERN A, GIVAN R, et al. Probabilistic planning via determinization in hindsight[C]. The 23rd AAAI Conference on Artificial Intelligence, Chicago, USA, 2008: 1010–1016.
|
CIMATTI A, PISTORE M, ROVERI M, et al. Weak, strong, and strong cyclic planning via symbolic model checking[J]. Artificial Intelligence, 2003, 147(1/2): 35–84. doi: 10.1016/s0004-3702(02)00374-0
|
MUISE C J, MCILRAITH S A, and BECK J C. Improved non-deterministic planning by exploiting state relevance[C]. The 22nd International Conference on Automated Planning and Scheduling, Atibaia, Brazil, 2012: 172–180.
|
MUISE C J, MCILRAITH S A, and BELLE V. Non-deterministic planning with conditional effects[C]. The 24th International Conference on Automated Planning and Scheduling, Portsmouth, USA, 2014: 370–374.
|
李洋, 文中华, 伍小辉, 等. 求最小期望权值强循环规划解[J]. 计算机科学, 2015, 42(4): 217–220, 257. doi: 10.11896/j.issn.1002-137X.2015.04.044
LI Yang, WEN Zhonghua, WU Xiaohui, et al. Solving strong cyclic planning with minimal expectation weight[J]. Computer Science, 2015, 42(4): 217–220, 257. doi: 10.11896/j.issn.1002-137X.2015.04.044
|
唐杰, 文中华, 汪泉, 等. 不确定可逆规划的强循环规划解[J]. 计算机研究与发展, 2013, 50(9): 1970–1980. doi: 10.7544/issn1000-1239.2013.20130404
TANG Jie, WEN Zhonghua, WANG Quan, et al. Solving strong cyclic planning in nondeterministic reversible planning domain[J]. Journal of Computer Research and Development, 2013, 50(9): 1970–1980. doi: 10.7544/issn1000-1239.2013.20130404
|
KUSHMERICK N, HANKS S, and WELD D S. An algorithm for probabilistic planning[J]. Artificial Intelligence, 1995, 76(1/2): 239–286. doi: 10.1016/0004-3702(94)00087-H
|
YOON S W, FERN A, and GIVAN R. FF-Replan: A baseline for probabilistic planning[C]. The 17th International Conference on Automated Planning and Scheduling, Providence, USA, 2007: 352–359.
|
YOON S, RUML W, BENTON J, et al. Improving determinization in hindsight for on-line probabilistic planning[C]. The 20th International Conference on Automated Planning and Scheduling, Toronto, Canada, 2010: 209–216.
|
ISSAKKIMUTHU M, FERN A, KHARDON R, et al. Hindsight optimization for probabilistic planning with factored actions[C]. The 25th International Conference on Automated Planning and Scheduling, Jerusalem, Israel, 2015: 120–128.
|
BRYCE D, KAMBHAMPATI S, and SMITH D E. Sequential Monte Carlo in probabilistic planning reachability heuristics[C]. The 16th International Conference on Automated Planning and Scheduling, Cumbria, UK, 2006: 233–242.
|
TREVIZAN F W, THIÉBAUX S, and HASLUM P. Occupation measure heuristics for probabilistic planning[C]. The 27th International Conference on Automated Planning and Scheduling, Pittsburgh, USA, 2017: 306–315.
|
DURKOTA K and LISÝ V. Computing optimal policies for attack graphs with action failures and costs[C]. The 7th European Starting AI Researcher Symposium, Prague, Czech Republic, 2014: 101–110.
|
SUN Wen, GORDON G J, BOOTS B, et al. Dual policy iteration[C]. The 32nd Conference on Neural Information Processing Systems, Montréal, Canada, 2018: 7059–7069.
|
HOUTHOOFT R, CHEN R Y, ISOLA P, et al. Evolved policy gradients[C]. The 32nd International Conference on Neural Information Processing Systems, Montréal, Canada, 2018: 5405–5414.
|
LIU Huaping, WU Yupei, and SUN Fuchun. Extreme trust region policy optimization for active object recognition[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(6): 2253–2258. doi: 10.1109/TNNLS.2017.2785233
|
SRINIVASAN S, LANCTOT M, ZAMBALDI V, et al. Actor-critic policy optimization in partially observable multiagent environments[C]. The 32nd Conference on Neural Information Processing Systems, Montréal, Canada, 2018: 3422–3435.
|
KANG Qinma, ZHOU Huizhuo, and KANG Yunfan. An asynchronous advantage actor-critic reinforcement learning method for stock selection and portfolio management[C]. The 2nd International Conference on Big Data Research, Weihai, China, 2018: 141–145. doi: 10.1145/3291801.3291831.
|
TAN Fuxiao and GUAN Xinping. Kernel-based adaptive critic designs for optimal control of nonlinear discrete-time system[C]. The 37th Chinese Control Conference, Wuhan, China, 2018: 2167–2172. doi: 10.23919/chicc.2018.8482778.
|
TAYLOR G and PARR R. Kernelized value function approximation for reinforcement learning[C]. The 26th Annual International Conference on Machine Learning, Montreal, Canada, 2009: 1017–1024. doi: 10.1145/1553374.1553504.
|
SARRAUTE C, BUFFET O, and HOFFMANN J. Penetration testing== POMDP solving?[C]. 2011 IJCAI Workshop on Intelligent Security, Barcelona, Spain, 2011: 66–73.
|
SMALLWOOD R D and SONDIK E J. The optimal control of partially observable Markov processes over a finite horizon[J]. Operations Research, 1973, 21(5): 1071–1088. doi: 10.1287/opre.21.5.1071
|
CHENG H T. Algorithms for partially observable Markov decision processes[D]. [Ph. D. dissertation], The University of British Columbia, 1988. doi: 10.14288/1.0098252.
|
PINEAU J, GORDON G, and THRUN S. Point-based value iteration: An anytime algorithm for POMDPs[C]. The 18th International Joint Conference on Artificial Intelligence, Acapulco, Mexico, 2003: 1025–1032.
|
LIU Bingbing, KANG Yu, JIANG Xiaofeng, et al. A fast approximation method for partially observable Markov decision processes[J]. Journal of Systems Science and Complexity, 2018, 31(6): 1423–1436. doi: 10.1007/s11424-018-7038-7
|
KURNIAWATI H, HSU D, LEE W S. SARSOP: Efficient point-based POMDP planning by approximating optimally reachable belief spaces[C]. The Robotics: Science and Systems IV, Zurich, Switzerland, 2008: 65–72. doi: 10.15607/RSS.2008.IV.009.
|
SARRAUTE C, BUFFET O, and HOFFMANN J. POMDPs make better hackers: Accounting for uncertainty in penetration testing[C]. The 26th AAAI Conference on Artificial Intelligence, Toronto, Canada, 2012: 1816–1824.
|
王刚, 胡鑫, 马润年, 等. 集体防御机制下的网络行动同步建模和稳定性[J]. 电子与信息学报, 2018, 40(6): 1515–1519. doi: 10.11999/JEIT170619
WANG Gang, HU Xin, MA Runnian, et al. Synchronization modeling and stability of cyberspace operation based on collective defensive mechanism[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1515–1519. doi: 10.11999/JEIT170619
|
LYE K W and WING J M. Game strategies in network security[J]. International Journal of Information Security, 2005, 4(1/2): 71–86. doi: 10.1007/s10207-004-0060-x
|
姜伟, 方滨兴, 田志宏, 等. 基于攻防博弈模型的网络安全测评和最优主动防御[J]. 计算机学报, 2009, 32(4): 817–827. doi: 10.3724/SP.J.1016.2009.00817
JIANG Wei, FANG Binxing, TIAN Zhihong, et al. Evaluating network security and optimal active defense based on attack-defense game model[J]. Chinese Journal of Computers, 2009, 32(4): 817–827. doi: 10.3724/SP.J.1016.2009.00817
|
王晋东, 余定坤, 张恒巍, 等. 静态贝叶斯博弈主动防御策略选取方法[J]. 西安电子科技大学学报: 自然科学版, 2016, 43(1): 144–150. doi: 10.3969/j.issn.1001-2400.2016.01.026
WANG Jindong, YU Dingkun, ZHANG Hengwei, et al. Active defense strategy selection based on the static Bayesian game[J]. Journal of Xidian University, 2016, 43(1): 144–150. doi: 10.3969/j.issn.1001-2400.2016.01.026
|
王元卓, 林闯, 程学旗, 等. 基于随机博弈模型的网络攻防量化分析方法[J]. 计算机学报, 2010, 33(9): 1748–1762. doi: 10.3724/SP.J.1016.2010.01748
WANG Yuanzhuo, LIN Chuang, CHENG Xueqi, et al. Analysis for network attack-defense based on stochastic game model[J]. Chinese Journal of Computers, 2010, 33(9): 1748–1762. doi: 10.3724/SP.J.1016.2010.01748
|
CUI Xiaolin, TAN Xiaobin, ZHANG Yong, et al. A Markov game theory-based risk assessment model for network information system[C]. 2008 International Conference on Computer Science and Software Engineering, Hubei, China, 2008: 1057–1061. doi: 10.1109/csse.2008.949.
|
LI Tao, WANG Jindong, CHEN Yu, et al. A multi-stage game approach applied to network security risk controlling[C]. The 2nd IEEE Advanced Information Technology, Electronic and Automation Control Conference, Chongqing, China, 2017: 2518–2522. doi: 10.1109/iaeac.2017.8054477.
|
黄健明, 张恒巍, 王晋东, 等. 基于攻防演化博弈模型的防御策略选取方法[J]. 通信学报, 2017, 38(1): 168–176. doi: 10.11959/j.issn.1000-436x.2017019
HUANG Jianming, ZHANG Hengwei, Wang Jindong, et al. Defense strategies selection based on attack-defense evolutionary game model[J]. Journal on Communications, 2017, 38(1): 168–176. doi: 10.11959/j.issn.1000-436x.2017019
|
张恒巍, 李涛. 基于多阶段攻防信号博弈的最优主动防御[J]. 电子学报, 2017, 45(2): 431–439. doi: 10.3969/j.issn.0372-2112.2017.02.023
ZHANG Hengwei and LI Tao. Optimal active defense based on multi-stage attack-defense signaling game[J]. Acta Electronica Sinica, 2017, 45(2): 431–439. doi: 10.3969/j.issn.0372-2112.2017.02.023
|
朱建明, 宋彪, 黄启发. 基于系统动力学的网络安全攻防演化博弈模型[J]. 通信学报, 2014, 35(1): 54–61. doi: 10.3969/j.issn.1000-436x.2014.01.007
ZHU Jianming, SONG Biao, and HUANG Qifa. Evolution game model of offense-defense for network security based on system dynamics[J]. Journal on Communications, 2014, 35(1): 54–61. doi: 10.3969/j.issn.1000-436x.2014.01.007
|
VADLAMUDI S G, SENGUPTA S, TAGUINOD M, et al. Moving target defense for web applications using Bayesian stackelberg games: (Extended Abstract)[C]. The 2016 International Conference on Autonomous Agents & Multiagent Systems, Singapore, 2016: 1377–1378.
|
YUAN Yuan, SUN Fuchun, and LIU Huaping. Resilient control of cyber-physical systems against intelligent attacker: A hierarchal stackelberg game approach[J]. International Journal of Systems Science, 2016, 47(9): 2067–2077. doi: 10.1080/00207721.2014.973467
|