Advanced Search
Volume 43 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
Haidong XU, Jiang WANG, Huiyue YI. Research on Componentization of Software Defined Wireless Access Network[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1064-1071. doi: 10.11999/JEIT191049
Citation: Haidong XU, Jiang WANG, Huiyue YI. Research on Componentization of Software Defined Wireless Access Network[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1064-1071. doi: 10.11999/JEIT191049

Research on Componentization of Software Defined Wireless Access Network

doi: 10.11999/JEIT191049
Funds:  The Natural Science Foundation of Shanghai (17ZR1428900), The Innovation Foundation of Chinese Academy of Sciences (CXJJ-20S037)
  • Received Date: 2019-12-30
  • Rev Recd Date: 2021-01-05
  • Available Online: 2021-01-11
  • Publish Date: 2021-04-20
  • In view of the challenges of 5G communication technology with high speed and multiple service scenarios, this paper proposes a new component-based Software Defined wireless access Network (SDN) architecture. Based on the architecture of Centralized Unit (CU), Distributed Unit (DU) and Active Antenna Unit(AAU) in 5G access network, further component-based evolution is carried out to form a new architecture composed the communication units of Centralized Control Unit (CCU), CU, DU, Radio Unit(RU), and AAU. This new architecture is not only conducive to the realization of wireless access network with slicing and virtualization, but also conducive to the adoption of distributed computing technology and hardware accelerating technology to break through the processing bottleneck of general-purpose processor, and reduce the forward transmission pressure between DU and AAU. In this paper, a prototype of component-based soft base station is developed and tested. The results show that the component-based scheme can not only provide high flexibility, but also improve the processing capacity of the general processor soft base station and reduce effectively the traffic of remote stations.
  • loading
  • [1]
    I C L, HUANG Jinri, DUAN Ran, et al. Recent progress on C-RAN centralization and cloudification[J]. IEEE Access, 2014, 2: 1039. doi: 10.1109/ACCESS.2014.2351411
    [2]
    王晓云, 黄宇红, 崔春风, 等. C-RAN: 面向绿色的未来无线接入网演进[J]. 中国通信, 2010, 7(3): 107–112.

    WANG Xiaoyun, HUANG Yuhong, CUI Chunfeng, et al. C-RAN: Evolution toward green radio access network[J]. China Communications, 2010, 7(3): 107–112.
    [3]
    LIN Yonghua, SHAO Ling, ZHU Zhenbo, et al. Wireless network cloud: Architecture and system requirements[J]. IBM Journal of Research and Development, 2010, 54(1): 12. doi: 10.1147/JRD.2009.2037680
    [4]
    田霖, 翟国伟, 黄亮, 等. 基于集中式接入网架构的异构无线网络资源管理技术研究[J]. 电信科学, 2013, 29(6): 25–31. doi: 10.3969/j.issn.1000-0801.2013.06.004

    TIAN Lin, ZHAI Guowei, HUANG Liang, et al. Research on key technologies of heterogeneous wireless network resource management based on centralized radio access network architecture[J]. Telecommunications Science, 2013, 29(6): 25–31. doi: 10.3969/j.issn.1000-0801.2013.06.004
    [5]
    EURECOM. OpenAirInterface[EB/OL]. http://www.openairinterface.org, 2019.
    [6]
    Software Radio Systems. SRSLTE[EB/OL]. https://www.softwareradiosystems.com/products/#srslte, 2019.
    [7]
    咸立文, 姚幽然, 赵扬. 基于开源SDR的LTE系统对比研究与实现[J]. 通信技术, 2018, 51(6): 1307–1314. doi: 10.3969/j.issn.1002-0802.2018.06.013

    XIAN Liwen, YAO Youran, and ZHAO Yang. Comparative research and implementation of LTE system based on open-source SDR[J]. Communications Technology, 2018, 51(6): 1307–1314. doi: 10.3969/j.issn.1002-0802.2018.06.013
    [8]
    WANG Jiang, XU Jing, YANG Yang, et al. GPP based open cellular network towards 5G[J]. China Communications, 2017, 14(6): 189–198. doi: 10.1109/CC.2017.7961374
    [9]
    张海波, 荆昆仑, 刘开健, 等. 车联网中一种基于软件定义网络与移动边缘计算的卸载策略[J]. 电子与信息学报, 2020, 42(3): 645–652. doi: 10.11999/JEIT190304

    ZHANG Haibo, JING Kunlun, LIU Kaijian, et al. An offloading mechanism based on software defined network and mobile edge computing in vehicular networks[J]. Journal of Electronics &Information Technology, 2020, 42(3): 645–652. doi: 10.11999/JEIT190304
    [10]
    CHEN Shanzhi and KANG Shaoli. A tutorial on 5G and the progress in China[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(3): 309–321. doi: 10.1631/FITEE.1800070
    [11]
    CPRI. Common Public Radio Interface (CPRI) Specification (V6.0)[S]. CRPI, 2013.
    [12]
    3GPP. TR 38.801 Study on new radio access technology: Radio access architecture and interfaces (Release 15)[S]. 3GPP, 2017.
    [13]
    Ericsson AB, Huawei Technologies Co. Ltd, NEC Corporation, et al. eCPRI transport network V1.2[EB/OL]http://www.cpri.info/downloads/Requirements_for_the_eCPRI_Transport_Network_V1_2_2018_06_25.pdf, 2018.
    [14]
    China Mobile Research Institute. White paper of next generation fronthaul interface[EB/OL]. labs. chinamobile. com/cran, 2015.
    [15]
    I C L, LI Han, KORHONEN J, et al. RAN revolution with NGFI (xhaul) for 5G[J]. Journal of Lightwave Technology, 2018, 36(2): 541–550. doi: 10.1109/JLT.2017.2764924
    [16]
    I C L, HUANG Jinri, YUAN Yannan, et al. 5G RAN architecture: C-RAN with NGFI[M]. XIANG Wei, ZHENG Kan, and SHEN Xuemin. 5G Mobile Communications. Cham: Springer, 2017: 431–455. doi: 10.1007/978-3-319-34208-5_16.
    [17]
    唐伦, 魏延南, 马润琳, 等. 虚拟化云无线接入网络下基于在线学习的网络切片虚拟资源分配算法[J]. 电子与信息学报, 2019, 41(7): 1533–1539. doi: 10.11999/JEIT180771

    TANG Lun, WEI Yannan, MA Runlin, et al. Online learning-based virtual resource allocation for network slicing in virtualized cloud radio access network[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1533–1539. doi: 10.11999/JEIT180771
    [18]
    NIU Binglai, ZHOU Yong, SHAH-MANSOURI H, et al. A dynamic resource sharing mechanism for cloud radio access networks[J]. IEEE Transactions on Wireless Communications, 2016, 15(12): 8325–8338. doi: 10.1109/TWC.2016.2613896
    [19]
    KALIL M, Al-DWEIK A, SHARKH M F A, et al. A framework for joint wireless network virtualization and cloud radio access networks for next generation wireless networks[J]. IEEE Access, 2017, 5: 20814–20827. doi: 10.1109/ACCESS.2017.2746666
    [20]
    3GPP. TS 23.501 System architecture for the 5G system (Release 15)[S]. 3GPP, 2017.
    [21]
    施南翔, 宋月, 刘景磊, 等. 5G核心网标准化进展及B5G演进初探[J]. 移动通信, 2020, 44(1): 2–7. doi: 10.3969/j.issn.1006-1010.2020.01.001

    SHI Nanxiang, SONG Yue, LIU Jinglei, et al. Standardization progress of 5G core networks and research on beyond 5G evolution[J]. Mobile Communications, 2020, 44(1): 2–7. doi: 10.3969/j.issn.1006-1010.2020.01.001
    [22]
    3GPP. TS 38.300 NR and NG-RAN overall description, stage 2 (Release 15)[S]. 3GPP, 2018.
    [23]
    魏垚, 谢沛荣. 网络切片标准分析与发展现状[J]. 移动通信, 2019, 43(4): 25–30. doi: 10.3969/j.issn.1006-1010.2019.04.005

    WEI Yao and XIE Peirong. Network slicing standard analysis and development status[J]. Mobile Communications, 2019, 43(4): 25–30. doi: 10.3969/j.issn.1006-1010.2019.04.005
    [24]
    刘珊, 韩潇, 黄蓉. 面向5G的无线侧网络切片发展与研究[J]. 邮电设计技术, 2020(1): 45–49.

    LIU Shan, HAN Xiao, and HUANG Rong. Development and research of network slice for 5G RAN[J]. Designing Technioues of Posts and Telecommunications, 2020(1): 45–49.
    [25]
    BAHL L, COCKE J, JELINEK F, et al. Optimal decoding of linear codes for minimizing symbol error rate (Corresp.)[J]. IEEE Transactions on Information Theory, 1974, 20(2): 284–287.
    [26]
    FOSSORIER M P C, MIHALJEVIC M, and IMAI H. Reduced complexity iterative decoding of low-density parity check codes based on belief propagation[J]. IEEE Transactions on Communications, 1999, 47(5): 673–680. doi: 10.1109/26.768759
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (1236) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return