Advanced Search
Volume 43 Issue 2
Feb.  2021
Turn off MathJax
Article Contents
Qingli YAN, Jianfeng CHEN. Sensor Selection Method Based on Multi-objective Optimal Optimization for Mixture Gaussian Noise[J]. Journal of Electronics & Information Technology, 2021, 43(2): 341-348. doi: 10.11999/JEIT191031
Citation: Qingli YAN, Jianfeng CHEN. Sensor Selection Method Based on Multi-objective Optimal Optimization for Mixture Gaussian Noise[J]. Journal of Electronics & Information Technology, 2021, 43(2): 341-348. doi: 10.11999/JEIT191031

Sensor Selection Method Based on Multi-objective Optimal Optimization for Mixture Gaussian Noise

doi: 10.11999/JEIT191031
Funds:  The National Natural Science Foundation of China-Zhejiang Joint Fund for the Integration of Industrialization and Information (U1609204)
  • Received Date: 2019-12-24
  • Rev Recd Date: 2020-10-21
  • Available Online: 2020-10-23
  • Publish Date: 2021-02-23
  • To overcome the flaw that the sensor selection methods based on either of Bayesian Fisher information matrix or mutual information could not provide coincident results, the multiple objective optimal technology is developed for sensor selection by minimizing the number of sensors, maximizing corresponding Bayesian Fisher information matrix and mutual information of the selected sensors. Then, the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) approach is proposed to find the candidate that can better trade off the cost and two performance metrics. Comparison results demonstrate that the proposed method can find a better sensor group, and ultimately, its overall localization performance is more stable and accurate.

  • loading
  • SALVATI D, DRIOLI C, and FORESTI G L. Exploiting CNNs for improving acoustic source localization in noisy and reverberant conditions[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2018, 2(2): 103–116. doi: 10.1109/TETCI.2017.2775237
    闫青丽, 陈建峰. 风场环境中声速修正的分布式声源定位算法[J]. 声学学报, 2017, 42(4): 421–426. doi: 10.15949/j.cnki.0371-0025.2017.04.005

    YAN Qingli and CHEN Jianfeng. Distributed sound source localization algorithm for sound velocity calibration in windy environment[J]. Acta Acustica, 2017, 42(4): 421–426. doi: 10.15949/j.cnki.0371-0025.2017.04.005
    刘坤, 吴建新, 甄杰, 等. 基于阵列天线和稀疏贝叶斯学习的室内定位方法[J]. 电子与信息学报, 2020, 42(5): 1158–1164. doi: 10.11999/JEIT190314

    LIU Kun, WU Jianxin, ZHEN Jie, et al. Indoor localization algorithm based on array antenna and sparse bayesian learning[J]. Journal of Electronics &Information Technology, 2020, 42(5): 1158–1164. doi: 10.11999/JEIT190314
    ERTIN E, FISHER J W, and POTTE L C. Maximum mutual information principle for dynamic sensor query problems[C]. The 2nd International Workshop on Information Processing in Sensor Networks, Palo Alto, USA, 2003: 405–416. doi: 10.1007/3-540-36978-3_27.
    WANG Hanbiao, YAO K, and ESTRIN D. Information-theoretic approaches for sensor selection and placement in sensor networks for target localization and tracking[J]. Journal of Communications and Networks, 2005, 7(4): 438–449. doi: 10.1109/jcn.2005.6387986
    ZHAO Feng, SHIN J, and REICH J. Information-driven dynamic sensor collaboration[J]. IEEE Signal Processing Magazine, 2002, 19(2): 61–72. doi: 10.1109/79.985685
    KAPLAN L. Global node selection for localization in a distributed sensor network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 113–135. doi: 10.1109/TAES.2006.1603409
    KAPLAN L. Local node selection for localization in a distributed sensor network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 136–146. doi: 10.1109/TAES.2006.1603410
    CHEPURI S P and LEUS G. Sparsity-promoting sensor selection for non-linear measurement models[J]. IEEE Transactions on Signal Processing, 2015, 63(3): 684–698. doi: 10.1109/tsp.2014.2379662
    LIU Sijia, CHEPURI S P, FARDAD M, et al. Sensor selection for estimation with correlated measurement noise[J]. IEEE Transactions on Signal Processing, 2016, 64(13): 3509–3522. doi: 10.1109/TSP.2016.2550005
    郝本建, 王林林, 李赞, 等. 面向TDOA被动定位的定位节点选择方法[J]. 电子与信息学报, 2019, 41(2): 213–219. doi: 10.11999/JEIT180293

    HAO Benjian, WANG Linlin, LI Zan, et al. Sensor selection method for TDOA passive localization[J]. Journal of Electronics &Information Technology, 2019, 41(2): 213–219. doi: 10.11999/JEIT180293
    YANG Mengna, JACKSON D R, CHEN Ji, et al. A TDOA localization method for nonline-of-sight scenarios[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(4): 2666–2676. doi: 10.1109/TAP.2019.2891403
    NGUYEN N H, DOĞANÇAY K, and KURUOĞLU E E. An iteratively reweighted instrumental-variable estimator for robust 3-D AOA localization in impulsive noise[J]. IEEE Transactions on Signal Processing, 2019, 67(18): 4795–4808. doi: 10.1109/TSP.2019.2931210
    YAN Qingli, CHEN Jianfeng, OTTOY G, et al. Robust AOA based acoustic source localization method with unreliable measurements[J]. Signal Processing, 2018, 152: 13–21. doi: 10.1016/j.sigpro.2018.05.010
    CAO Nianxia, CHOI S, MASAZADE E, et al. Sensor selection for target tracking in wireless sensor networks with uncertainty[J]. IEEE Transactions on Signal Processing, 2016, 64(20): 5191–5204. doi: 10.1109/TSP.2016.2595500
    ZHAO Yue, LI Zan, HAO Benjian, et al. Sensor selection for TDOA-based localization in wireless sensor networks with non-line-of-sight condition[J]. IEEE Transactions on Vehicular Technology, 2019, 68(10): 9935–9950. doi: 10.1109/TVT.2019.2936110
    GIL P, MARTINS H, and JANUÁRIO F. Outliers detection methods in wireless sensor networks[J]. Artificial Intelligence Review, 2019, 52(4): 2411–2436. doi: 10.1007/s10462-018-9618-2
    ZHANG Jiangfan, WANG Xiaodong, BLUM R S, et al. Attack detection in sensor network target localization systems with quantized data[J]. IEEE Transactions on Signal Processing, 2018, 66(8): 2070–2085. doi: 10.1109/TSP.2018.2802459
    ZHANG Qingfu and LI Hui. MOEA/D: A multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712–731. doi: 10.1109/TEVC.2007.892759
    SHIH H S, SHYUR H J, and LEE E S. An extension of TOPSIS for group decision making[J]. Mathematical and Computer Modelling, 2007, 45(7/8): 801–813. doi: 10.1016/j.mcm.2006.03.023
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (1034) PDF downloads(105) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return