Advanced Search
Volume 43 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
Yunhua RAO, Jiankang ZHOU, Xianrong WAN, Ziping GONG, Hengyu KE. CFAR for Passive Radar Based on Dynamic Ordered Matrix[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1154-1161. doi: 10.11999/JEIT191024
Citation: Yunhua RAO, Jiankang ZHOU, Xianrong WAN, Ziping GONG, Hengyu KE. CFAR for Passive Radar Based on Dynamic Ordered Matrix[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1154-1161. doi: 10.11999/JEIT191024

CFAR for Passive Radar Based on Dynamic Ordered Matrix

doi: 10.11999/JEIT191024
Funds:  The National Natural Science Foundation of China (U1933135,61271400), The National Key Research and Development Project (2016YFB0502403), The Hubei Province Technology Innovation Special Major Project (2016AAA017), The Shenzhen Science and Technology Project (JCYJ20170818112037398)
  • Received Date: 2019-12-23
  • Rev Recd Date: 2020-10-20
  • Available Online: 2020-12-08
  • Publish Date: 2021-04-20
  • Passive radar uses third party radiation source, which is uncontrollable. Due to the complicated electromagnetic propagation conditions, especially in a low altitude target detection, the detection performance of the radar is greatly affected by clutters, leading to significant degradation of the performance of traditional constant false alarm algorithm. In order to improve the detection performance, a Dynamic Ordered Matrix Constant False Alarm Rate (DOM-CFAR) algorithm based on radar clutter space partition is proposed. In this algorithm, an ordered matrix is constructed after dividing the clutter space from distance and Doppler dimension. Then the dynamic extreme value is replaced according to the background clutter change and the estimated median value of clutter is extracted so as to calculate the detection threshold. This algorithm makes the threshold value of detection can dynamically adapt to the clutter power change. The simulation and measurement results show that the algorithm can maintain excellent detection performance under the complex environment with uniform clutter, multi-target and clutter edge.
  • loading
  • FINN H M. Adaptive detection in clutter[C]. The 5th Symposium on Adaptive Processes, New Jersey, USA, 1966: 562–567. doi: 10.1109/SAP.1966.271149.
    WANG Weijiang, WANG Runyi, JIANG Rongkun, et al. Modified reference window for two-dimensional CFAR in radar target detection[J]. The Journal of Engineering, 2019, 2019(21): 7924–7927. doi: 10.1049/joe.2019.0687
    TRUNK G V. Range resolution of targets using automatic detectors[J]. IEEE Transactions on Aerospace and Electronic Systems, 1978, AES-14(5): 750–755. doi: 10.1109/TAES.1978.308625
    HANSEN V G and SAWYERS J H. Detectability loss due to "greatest of" selection in a cell-averaging CFAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 1980, 16(1): 115–118. doi: 10.1109/TAES.1980.308885
    SMITH M E and VARSHNEY P K. Intelligent CFAR processor based on data variability[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(3): 837–847. doi: 10.1109/7.869503
    WANG Leiou, WANG Donghui, and HAO Chengpeng. Intelligent CFAR detector based on support vector machine[J]. IEEE Access, 2017, 5: 26965–26972. doi: 10.1109/ACCESS.2017.2774262
    CARRETERO M V I, HARMANNY R I A, and TROMMEL R P. Smart-CFAR, A machine learning approach to floating level detection in radar[C]. The 16th European Radar Conference (EuRAD), Paris, France, 2019: 161–164.
    ROHLING H. Radar CFAR thresholding in clutter and multiple target situations[J]. IEEE Transactions on Aerospace and Electronic Systems, 1983, AES-19(4): 608–621. doi: 10.1109/TAES.1983.309350
    VILLAR S A, DE PAULA M, SOLARI F J, et al. A framework for acoustic segmentation using order statistic-constant false alarm rate in two dimensions from sidescan sonar data[J]. IEEE Journal of Oceanic Engineering, 2018, 43(3): 735–748. doi: 10.1109/JOE.2017.2721058
    柳向, 李东生, 胡瑞. 基于有序统计类恒虚警检测的脉冲压缩雷达移频特征消隐多载波干扰研究[J]. 兵工学报, 2017, 38(11): 2134–2142. doi: 10.3969/j.issn.1000-1093.2017.11.008

    LIU Xiang, LI Dongsheng, and HU Rui. Research on blanking shift-frequency-multi-carrier jamming against pulse-compression radar based on OS-CFAR[J]. Acta Armamentarii, 2017, 38(11): 2134–2142. doi: 10.3969/j.issn.1000-1093.2017.11.008
    LIN C H, LIN Y C, BAI Yue, et al. DL-CFAR: A Novel CFAR target detection method based on deep learning[C]. The 90th IEEE Vehicular Technology Conference (VTC2019-Fall), Honolulu, USA, 2019: 1–6. doi: 10.1109/VTCFall.2019.8891420.
    JIN Erwen, YAN Danqing, ZHANG Zhongjin, et al. FOD Detection on Airport Runway with Clutter Map CFAR Plane Technique[M]. LIANG Qilian, WANG Wei, MU Jiasong, et al. Communications, Signal Processing, and Systems. New York: Springer, 2012: 335–342. doi: 10.1007/978-1-4614-5803-6_34.
    AKÇAPINAR K and BAYKUT S. CM-CFAR parameter learning based square-law detector for foreign object debris radar[C]. The 48th European Microwave Conference, Madrid, Spain, 2018: 421–424. doi: 10.23919/EuMC.2018.8541714.
    TAO Ding, ANFINSEN S N, and BREKKE C. Robust CFAR detector based on truncated statistics in multiple-target situations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1): 117–134. doi: 10.1109/TGRS.2015.2451311
    WU Fengtao, WU Nan, and WU Maosong. A fast and slow time combined CFAR detection algorithm used in through-the-wall radar[C]. 2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium, Haining, China, 2017: 1–3. doi: 10.1109/EDAPS.2017.8276955.
    LAYEGHY S, ODABAEE M, KHLIF M S, et al. A time frequency approach to CFAR detection[C]. 2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Bilbao, Spain, 2011: 230–234. doi: 10.1109/ISSPIT.2011.6151565.
    代振, 王平波, 卫红凯. 非高斯背景下基于Sigmoid函数的信号检测[J]. 电子与信息学报, 2019, 41(12): 2945–2950. doi: 10.11999/JEIT190012

    DAI Zhen, WANG Pingbo, and WEI Hongkai. Signal detection based on sigmoid function in Non-Gaussian noise[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2945–2950. doi: 10.11999/JEIT190012
    NARASIMHAN R S, RAMAKRISHNAN K R, and VENGADARAJAN A. Robust variability index CFAR for non-homogeneous background[J]. IET Radar, Sonar & Navigation, 2019, 13(10): 1775–1786. doi: 10.1049/iet-rsn.2018.5435
    ZHANG Xin, ZHANG Renli, SHENG Weixing, et al. Intelligent CFAR detector for non-homogeneous weibull clutter environment based on skewness[C]. 2018 IEEE Radar Conference (RadarConf18), Oklahoma, USA, 2018: 322–326. doi: 10.1109/RADAR.2018.8378578.
    赵文静, 刘畅, 刘文龙, 等. K分布海杂波背景下基于最大特征值的雷达信号检测算法[J]. 电子与信息学报, 2018, 40(9): 2235–2241. doi: 10.11999/JEIT171092

    ZHAO Wenjing, LIU Chang, LIU Wenlong, et al. Maximum eigenvalue based radar signal detection method for K distribution sea clutter environment[J]. Journal of Electronics &Information Technology, 2018, 40(9): 2235–2241. doi: 10.11999/JEIT171092
    万显荣. 基于低频段数字广播电视信号的外辐射源雷达发展现状与趋势[J]. 雷达学报, 2012, 1(2): 109–123. doi: 10.3724/SP.J.1300.2012.20027

    WAN Xianrong. An overview on development of passive radar based on the low frequency band digital broadcasting and TV signals[J]. Journal of Radars, 2012, 1(2): 109–123. doi: 10.3724/SP.J.1300.2012.20027
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (1197) PDF downloads(116) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return