Advanced Search
Volume 42 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
Tengyao LI, Buhong WANG, Fute SHANG, Jiwei TIAN, Kunrui CAO. A Resilient Recovery Method on ADS-B Attack Data[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2365-2373. doi: 10.11999/JEIT191020
Citation: Tengyao LI, Buhong WANG, Fute SHANG, Jiwei TIAN, Kunrui CAO. A Resilient Recovery Method on ADS-B Attack Data[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2365-2373. doi: 10.11999/JEIT191020

A Resilient Recovery Method on ADS-B Attack Data

doi: 10.11999/JEIT191020
Funds:  The National Natural Science Foundation of China (61902426)
  • Received Date: 2019-12-23
  • Rev Recd Date: 2020-05-22
  • Available Online: 2020-07-21
  • Publish Date: 2020-10-13
  • In order to conduct effective resilient recovery on Automatic Dependent Surveillance-Broadcast (ADS-B) attack data and ensure the continuous availability of air traffic situation awareness, a resilient recovery method on ADS-B attack data is proposed. Based on attack detection strategies, the measurement and prediction sequences of ADS-B data are obtained to set up deviation data, differential data and neighbor density data sequences, which are designed to construct recovery vectors, mine the temporal correlations and the spatial correlations respectively. The selected data sequences are integrated to accomplish the whole recovery method and decide the end point of recovery. The method is applied to elinimating attack effects and recovering the attack data towards normal data. According to the results of experiments on six classical attack patterns, the proposed method is effective on recovering attack data and eliminating the attack impacts.
  • loading
  • STROHMEIER M, SCHÄFER M, PINHEIRO R, et al. On perception and reality in wireless air traffic communication security[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(6): 1338–1357. doi: 10.1109/tits.2016.2612584
    WANG Wenyi, WU Renbiao, and LIANG Junli. ADS-B signal separation based on blind adaptive beamforming[J]. IEEE Transactions on Vehicular Technology, 2019, 68(7): 6547–6556. doi: 10.1109/TVT.2019.2914233
    SUN Junzi, VÛ H, ELLERBROEK J, et al. pyModeS: Decoding mode-S surveillance data for open air transportation research[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(7): 2777–2786. doi: 10.1109/TITS.2019.2914770
    STROHMEIER M, SCHÄFER M, LENDERS V, et al. Realities and challenges of NextGen air traffic management: The case of ADS-B[J]. IEEE Communications Magazine, 2014, 52(5): 111–118. doi: 10.1109/MCOM.2014.6815901
    STROHMEIER M, LENDERS V, and MARTINOVIC I. On the security of the automatic dependent surveillance-broadcast protocol[J]. IEEE Communications Surveys & Tutorials, 2015, 17(2): 1066–1087. doi: 10.1109/comst.2014.2365951
    MANESH M R and KAABOUCH N. Analysis of vulnerabilities, attacks, countermeasures and overall risk of the automatic dependent surveillance-broadcast (ADS-B) system[J]. International Journal of Critical Infrastructure Protection, 2017, 19: 16–31. doi: 10.1016/j.ijcip.2017.10.002
    钱亚冠, 卢红波, 纪守领, 等. 基于粒子群优化的对抗样本生成算法[J]. 电子与信息学报, 2019, 41(7): 1658–1665. doi: 10.11999/JEIT180777

    QIAN Yaguan, LU Hongbo, JI Shouling, et al. Adversarial example generation based on particle swarm optimization[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1658–1665. doi: 10.11999/JEIT180777
    SCHÄFER M, LENDERS V, and MARTINOVIC I. Experimental analysis of attacks on next generation air traffic communication[C]. The 11th International Conference on Applied Cryptography and Network Security, Berlin, Germany, 2013: 253–271. doi: 10.1007/978-3-642-38980-1_16.
    COSTIN A and FRANCILLON A. Ghost in the air (traffic): On insecurity of ADS-B protocol and practical attacks on ADS-B devices[C]. Black Hat, Las Vegas, USA, 2012: 1–10.
    陈红松, 陈京九. 基于循环神经网络的无线网络入侵检测分类模型构建与优化研究[J]. 电子与信息学报, 2019, 41(6): 1427–1433. doi: 10.11999/JEIT180691

    CHEN Hongsong and CHEN Jingjiu. Recurrent neural networks based wireless network intrusion detection and classification model construction and optimization[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1427–1433. doi: 10.11999/JEIT180691
    YING Xuhang, MAZER J, BERNIERI G, et al. Detecting ADS-B spoofing attacks using deep neural networks[C]. 2019 IEEE Conference on Communications and Network Security, Washington, USA, 2019: 187–195. doi: 10.1109/CNS.2019.8802732.
    HABLER E and SHABTAI A. Using LSTM encoder-decoder algorithm for detecting anomalous ADS-B messages[J]. Computers & Security, 2018, 78: 155–173. doi: 10.1016/j.cose.2018.07.004
    丁建立, 邹云开, 王静, 等. 基于深度学习的ADS-B异常数据检测模型[J]. 航空学报, 2019, 40(12): 323220. doi: 10.7527/S1000-6893.2019.23220

    DING Jianli, ZOU Yunkai, WANG Jing, et al. ADS-B anomaly data detection model based on deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12): 323220. doi: 10.7527/S1000-6893.2019.23220
    LI Tengyao, WANG Buhong, SHANG Fute, et al. Online sequential attack detection for ADS-B data based on hierarchical temporal memory[J]. Computers & Security, 2019, 87: 101599. doi: 10.1016/j.cose.2019.101599
    ZHANG Tao, WU Renbiao, LAI Ran, et al. Probability hypothesis density filter for radar systematic bias estimation aided by ADS-B[J]. Signal Processing, 2016, 120: 280–287. doi: 10.1016/j.sigpro.2015.09.012
    SMITH M, STROHMEIER M, HARMAN J, et al. Safety vs. security: Attacking avionic systems with humans in the loop[J]. arXiv, 2019, 1905.08039.
    STROHMEIER M, MARTINOVIC I, FUCHS M, et al. Opensky: A swiss army knife for air traffic security research[C]. The 34th IEEE/AIAA Digital Avionics Systems Conference, Prague, Czech Republic, 2015: 1–14. doi: 10.1109/DASC.2015.7311411.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (1691) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return