Advanced Search
Volume 43 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
Xiaopeng WANG, Qingsheng WANG, Jianjun JIAO, Jincheng LIANG. Fuzzy C-Means Clustering with Fast and Adaptive Non-local Spatial Constraint and Membership Linking for Noise Image Segmentation[J]. Journal of Electronics & Information Technology, 2021, 43(1): 171-178. doi: 10.11999/JEIT191016
Citation: Xiaopeng WANG, Qingsheng WANG, Jianjun JIAO, Jincheng LIANG. Fuzzy C-Means Clustering with Fast and Adaptive Non-local Spatial Constraint and Membership Linking for Noise Image Segmentation[J]. Journal of Electronics & Information Technology, 2021, 43(1): 171-178. doi: 10.11999/JEIT191016

Fuzzy C-Means Clustering with Fast and Adaptive Non-local Spatial Constraint and Membership Linking for Noise Image Segmentation

doi: 10.11999/JEIT191016
Funds:  The National Natural Science Foundation of China (61761027)
  • Received Date: 2019-12-19
  • Rev Recd Date: 2020-11-04
  • Available Online: 2020-11-07
  • Publish Date: 2021-01-15
  • Considering the problem of the low anti-noise performance when Fuzzy C-Means clustering (FCM) algorithm is applied to image segmentation, a FCM clustering algorithm with fast and adaptive non-local spatial constraint and membership linking is proposed in this paper. Firstly, in order to increase the computing speed of non-local spatial term, a fast method is proposed by modifying the loop based on all pixels in an image into a loop based on search window and by utilising spatial shift image and recursive Gaussian filter. Next, the squared difference between original image and non-local spatial term is calculated as adaptive weight of non-local information term. The squared difference is reciprocally transformed as adaptive weight of the original image. Finally, the membership linking is established to reduce the iteration steps before convergence by adding the square of the sum of all the membership degrees in every cluster in logarithmic form as the denominator of the objectvie function. Experiments on noisy artificial and natural images prove that this proposed algorithm has superior performance in terms of Segmentation accuracy, mean intersection over union, normalized mutual information, running time and iteration steps.

  • loading
  • 范九伦, 雷博. 倒数粗糙熵图像阈值化分割算法[J]. 电子与信息学报, 2020, 42(1): 214–221. doi: 10.11999/JEIT190559

    FAN Jiulun and LEI Bo. Image thresholding segmentation method based on reciprocal rough entropy[J]. Journal of Electronics &Information Technology, 2020, 42(1): 214–221. doi: 10.11999/JEIT190559
    许新征, 丁世飞, 史忠植, 等. 图像分割的新理论和新方法[J]. 电子学报, 2010, 38(2A): 76–82.

    XU Xinzheng, DING Shifei, SHI Zhongzhi, et al. New theories and methods of image segmentation[J]. Acta Electronica Sinica, 2010, 38(2A): 76–82.
    姜枫, 顾庆, 郝慧珍, 等. 基于内容的图像分割方法综述[J]. 软件学报, 2017, 28(1): 160–183. doi: 10.13328/j.cnki.jos.005136

    JIANG Feng, GU Qing, HAO Huizhen, et al. Survey on content-based image segmentation methods[J]. Journal of Software, 2017, 28(1): 160–183. doi: 10.13328/j.cnki.jos.005136
    申铉京, 刘翔, 陈海鹏. 基于多阈值Otsu准则的阈值分割快速计算[J]. 电子与信息学报, 2017, 39(1): 144–149. doi: 10.11999/JEIT160248

    SHEN Xuanjing, LIU Xiang, and CHEN Haipeng. Fast computation of threshold based on multi-threshold Otsu criterion[J]. Journal of Electronics &Information Technology, 2017, 39(1): 144–149. doi: 10.11999/JEIT160248
    KHAIRE P A and THAKUR N V. An overview of image segmentation algorithms[J]. International Journal of Image Processing and Vision Sciences, 2012, 1(2): 62–68.
    雷涛, 张肖, 加小红, 等. 基于模糊聚类的图像分割研究进展[J]. 电子学报, 2019, 47(8): 1776–1791. doi: 10.3969/j.issn.0372-2112.2019.08.023

    LEI Tao, ZHANG Xiao, JIA Xiaohong, et al. Research progress on image segmentation based on fuzzy clustering[J]. Acta Electronica Sinica, 2019, 47(8): 1776–1791. doi: 10.3969/j.issn.0372-2112.2019.08.023
    WAZARKAR S and KESHAVAMURTHY B N. A survey on image data analysis through clustering techniques for real world applications[J]. Journal of Visual Communication and Image Representation, 2018, 55: 596–626. doi: 10.1016/j.jvcir.2018.07.009
    ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3): 338–435. doi: 10.1016/S0019-9958(65)90241-X
    FAN Jiulun, ZHEN Wenzhi, and XIE Weixin. Suppressed fuzzy c-means clustering algorithm[J]. Pattern Recognition Letters, 2003, 24(9/10): 1607–1612. doi: 10.1016/S0167-8655(02)00401-4
    AHMED M N, YAMANY S M, MOHAMED N, et al. A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data[J]. IEEE Transactions on Medical Imaging, 2002, 21(3): 193–199. doi: 10.1109/42.996338
    ZHU Lin, CHUNG F L, and WANG Shitong. Generalized fuzzy C-means clustering algorithm with improved fuzzy partitions[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) , 2009, 39(3): 578–591. doi: 10.1109/TSMCB.2008.2004818
    KRINIDIS S and CHATZIS V. A robust fuzzy local information c-means clustering algorithm[J]. IEEE Transactions on Image Processing, 2010, 19(5): 1328–1337. doi: 10.1109/TIP.2010.2040763
    ZHAO Feng, JIAO Licheng, and LIU Hanqiang. Fuzzy c-means clustering with non local spatial information for noisy image segmentation[J]. Frontiers of Computer Science in China, 2011, 5(1): 45–56. doi: 10.1007/s11704-010-0393-8
    CHEN Songcan and ZHANG Daoqiang. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) , 2004, 34(4): 1907–1916. doi: 10.1109/TSMCB.2004.831165
    ZHAO Feng. Fuzzy clustering algorithms with self-tuning non-local spatial information for image segmentation[J]. Neurocomputing, 2013, 106: 115–125. doi: 10.1016/j.neucom.2012.10.022
    兰蓉, 林洋. 抑制式非局部空间直觉模糊C-均值图像分割算法[J]. 电子与信息学报, 2019, 41(6): 1472–1479. doi: 10.11999/JEIT180651

    LAN Rong and LIN Yang. Suppressed non-local Spatial intuitionistic fuzzy C-means image segmentation algorithm[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1472–1479. doi: 10.11999/JEIT180651
    施伟锋, 卓金宝, 兰莹. 一种基于属性空间相似性的模糊聚类算法[J]. 电子与信息学报, 2019, 41(11): 2722–2728. doi: 10.11999/JEIT180974

    SHI Weifeng, ZHUO Jinbao, and LAN Ying. A novel fuzzy clustering algorithm based on similarity of attribute space[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2722–2728. doi: 10.11999/JEIT180974
    GONG Maoguo, LIANG Yan, SHI Jiao, et al. Fuzzy C-means clustering with local information and kernel metric for image segmentation[J]. IEEE Transactions on Image Processing, 2013, 22(2): 573–584. doi: 10.1109/TIP.2012.2219547
    ELAZAB A, WANG Changmiao, JIA Fucang, et al. Segmentation of brain tissues from magnetic resonance images using adaptively regularized kernel-based fuzzy C-means clustering[J]. Computational and Mathematical Methods in Medicine, 2015, 2015: 485495. doi: 10.1155/2015/485495
    MEMON K H and LEE D H. Generalised kernel weighted fuzzy C-means clustering algorithm with local information[J]. Fuzzy Sets and Systems, 2018, 340: 91–108. doi: 10.1016/j.fss.2018.01.019
    BUADES A, COLL B, and MOREL J M. A non-local algorithm for image denoising[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 60–65. doi: 10.1109/CVPR.2005.38.
    VAN VLIET L J, YOUNG I T, and VERBEEK P W. Recursive Gaussian derivative filters[C]. The 14th International Conference on Pattern Recognition, Brisbane, Australia, 1998: 509–514. doi: 10.1109/ICPR.1998.711192.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (1330) PDF downloads(334) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return