Advanced Search
Volume 43 Issue 2
Feb.  2021
Turn off MathJax
Article Contents
Zhizeng LUO, Xianju LU, Ying ZHOU. EEG Feature Extraction Based on Brain Function Network and Sample Entropy[J]. Journal of Electronics & Information Technology, 2021, 43(2): 412-418. doi: 10.11999/JEIT191015
Citation: Zhizeng LUO, Xianju LU, Ying ZHOU. EEG Feature Extraction Based on Brain Function Network and Sample Entropy[J]. Journal of Electronics & Information Technology, 2021, 43(2): 412-418. doi: 10.11999/JEIT191015

EEG Feature Extraction Based on Brain Function Network and Sample Entropy

doi: 10.11999/JEIT191015
Funds:  The National Natural Science Foundation of China (61671197)
  • Received Date: 2019-12-19
  • Rev Recd Date: 2020-12-07
  • Available Online: 2020-12-16
  • Publish Date: 2021-02-23
  • For the low recognition rate of motor imagery ElectroEncephaloGram (EEG) signals using single feature in Brain-Computer Interface (BCI) research, a feature extraction method combining brain function network and sample entropy is proposed. According to the neural mechanism appearing in Event Related Synchronization/Event Related Desynchronization (ERS/ERD) phenomenon and the contralateral mapping mechanism between cortex and limb motor imagery, the μ rhythm is denoised by wavelet packet transform. The brain function network is constructed for left hemispherical brain region and right hemispherical brain region by μ rhythm of 27 left channels and 27 right channels respectively. The mean node degree and the mean clustering coefficient are calculated as the brain function network characteristics, and the feature vectors combining the distribution and directivity are constructed by the sample entropy of C3 and C4 channels with the μ rhythm. The Support Vector Machine (SVM) is used to classify the left hand and right hand motor imagery EEG signals. The results show that the feature extraction method based on brain function network and sample entropy achieves better classification result, and the highest classification rate reached 90.27%.

  • loading
  • LUO Zhizeng, LU Xianju, and XI Xugang. EEG feature extraction based on a bilevel network: Minimum spanning tree and regional network[J]. Electronics, 2020, 9(2): 203. doi: 10.3390/electronics9020203
    谭平, 刘利枚, 郭璠, 等. Chernoff加权分类器框架在运动想象脑-机接口中的应用[J]. 电子与信息学报, 2020, 42(2): 488–494. doi: 10.11999/JEIT181132

    TAN Ping, LIU Limei, GUO Fan, et al. Applying Chernoff weighted classification frame method to motorimagery brain computer interface[J]. Journal of Electronics &Information Technology, 2020, 42(2): 488–494. doi: 10.11999/JEIT181132
    唐贤伦, 李伟, 马伟昌, 等. 基于条件经验模式分解和串并行CNN的脑电信号识别[J]. 电子与信息学报, 2020, 42(4): 1041–1048. doi: 10.11999/JEIT190124

    TANG Xianlun, LI Wei, MA Weichang, et al. Conditional empirical mode decomposition and serial parallel CNN for electroencephalogram signal recognition[J]. Journal of Electronics &Information Technology, 2020, 42(4): 1041–1048. doi: 10.11999/JEIT190124
    MOURA A, LOPEZ S, OBEID I, et al. A comparison of feature extraction methods for EEG signals[C]. 2015 IEEE Signal Processing in Medicine and Biology Symposium, Philadelphia, USA, 2015: 1–2. doi: 10.1109/SPMB.2015.7405430.
    BANITALEBI A, SETAREHDAN S K, HOSSEIN-ZADEH G A. A technique based on chaos for brain computer interfacing[C]. The 2009 14th International CSI Computer Conference, Tehran, Iran, 2009: 464–469. doi: 10.1109/CSICC.2009.5349623.
    ABÁSOLO D, HORNERO R, GÓMEZ G, et al. Analysis of EEG background activity in Alzheimer’s disease patients with Lempel–Ziv complexity and central tendency measure[J]. Medical Engineering & Physics, 2006, 28(4): 315–322.
    周静, 吴效明. 基于样本熵的睡眠呼吸暂停综合征脑电研究[J]. 中国医学物理学杂志, 2016, 33(7): 722–725. doi: 10.3969/j.issn.1005-202X.2016.07.017

    ZHOU Jing and WU Xiaoming. Electroencephalogram of sleep apnea syndrome based on sample entropy[J]. Chinese Journal of Medical Physics, 2016, 33(7): 722–725. doi: 10.3969/j.issn.1005-202X.2016.07.017
    BIRBAUMER N. Breaking the silence: Brain-Computer Interfaces (BCI) for communication and motor control[J]. Psychophysiology, 2006, 43(6): 517–532. doi: 10.1111/j.1469-8986.2006.00456.x
    SPORNS O. Structure and function of complex brain networks[J]. Dialogues in Clinical Neuroscience, 2013, 15(3): 247–262.
    CHAOVALITWONGSE W A, POTTENGER R S, WANG Shouyi, et al. Pattern- and network-based classification techniques for multichannel medical data signals to improve brain diagnosis[J]. IEEE Transactions on Systems, Man, and Cybernetics- Part A: Systems and Humans, 2011, 41(5): 977–988. doi: 10.1109/tsmca.2011.2106118
    STANLEY M L, SIMPSON S L, DALE D, et al. Changes in brain network efficiency and working memory performance in aging[J]. PLoS One, 2015, 10(4): e0123950. doi: 10.1371/journal.pone.0123950
    杨硕, 艾娜, 王磊, 等. 脑疲劳状态的脑功能网络特征分类研究[J]. 生物医学工程学杂志, 2018, 35(2): 171–175.

    YANG Shuo, AI Na, WANG Lei, et al. Research on classification of brain functional network features during mental fatigue[J]. Journal of Biomedical Engineering, 2018, 35(2): 171–175.
    周鹏, 葛家怡, 曹红宝, 等. 基于样本熵的运动想象分类研究[J]. 信息与控制, 2008, 37(2): 191–196. doi: 10.3969/j.issn.1002-0411.2008.02.013

    ZHOU Peng, GE Jiayi, CAO Hongbao, et al. Classification of motor imagery based on sample entropy[J]. Information and Control, 2008, 37(2): 191–196. doi: 10.3969/j.issn.1002-0411.2008.02.013
    PINCUS S. Approximate entropy (ApEn) as a complexity measure[J]. Chaos, 1995, 5(1): 110–117.
    BLANKERTZ B, DORNHEGE G, KRAULEDAT M, et al. The non-invasive Berlin Brain–Computer Interface: Fast acquisition of effective performance in untrained subjects[J]. NeuroImage, 2007, 37(2): 539–550.
    JOCHUMSEN M, ROVSING C, ROVSING H, et al. Classification of hand grasp kinetics and types using movement-related cortical potentials and EEG rhythms[J]. Computational Intelligence and Neuroscience, 2017, 2017: 7470864. doi: 10.1155/2017/7470864
    NAGAMORI S and TANAKA H. Analysis method for ERD in mu-rhythm detection in motor imagery brain-computer interface[C]. 2016 IEEE International Conference on Systems, Man, and Cybernetics, Budapest, Hungary, 2017: 867–870. doi: 10.1109/SMC.2016.7844349.
    ZHANG Haihong, CHIN Z Y, ANG K K, et al. Optimum spatio-spectral filtering network for brain-computer interface[J]. IEEE Transactions on Neural Networks, 2011, 22(1): 52–63. doi: 10.1109/TNN.2010.2084099
    李静, 王金甲, 李慧. 融合脑电特征的弹性网特征选择和分类[J]. 生物医学工程学杂志, 2016, 33(3): 413–419. doi: 10.7507/1001-5515.20160070

    LI Jing, WANG Jinjia, and LI Hui. Selection and classification of elastic net feature with fused electroencephalogram features[J]. Journal of Biomedical Engineering, 2016, 33(3): 413–419. doi: 10.7507/1001-5515.20160070
    袁玲, 杨帮华, 马世伟. 基于HHT和SVM的运动想象脑电识别[J]. 仪器仪表学报, 2010, 31(3): 649–654. doi: 10.19650/j.cnki.cjsi.2010.03.029

    YUAN Ling, YANG Banghua, and MA Shiwei. Discrimination of movement imagery EEG based on HHT and SVM[J]. Chinese Journal of Scientific Instrument, 2010, 31(3): 649–654. doi: 10.19650/j.cnki.cjsi.2010.03.029
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (2052) PDF downloads(228) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return