Citation: | Fenhua WANG, Bo ZHAO, Chao HUANG, Youqi YAN. Person Re-identification Based on Multi-scale Network Attention Fusion[J]. Journal of Electronics & Information Technology, 2020, 42(12): 3045-3052. doi: 10.11999/JEIT190998 |
FARENZENA M, BAZZANI L, PERINA A, et al. Person re-identification by symmetry-driven accumulation of local features[C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2360–2367.
|
周智恒, 刘楷怡, 黄俊楚, 等. 一种基于等距度量学习策略的行人重识别改进算法[J]. 电子与信息学报, 2019, 41(2): 477–483. doi: 10.11999/JEIT180336
ZHOU Zhiheng, LIU Kaiyi, HUANG Junchu, et al. Improved metric learning algorithm for person re-identification based on equidistance[J]. Journal of Electronics &Information Technology, 2019, 41(2): 477–483. doi: 10.11999/JEIT180336
|
HIRZER M, ROTH P M, KÖSTINGER M, et al. Relaxed pairwise learned metric for person re-identification[C]. The 12th European Conference on Computer Vision, Florence, Italy, 2012: 780–793.
|
SUN Yifan, ZHENG Liang, YANG Yi, et al. Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline)[C]. The 15th European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 480–496.
|
LUO Hao, JIANG Wei, ZHANG Xuan, et al. AlignedReID++: Dynamically matching local information for person re-identification[J]. Pattern Recognition, 2019, 94: 53–61. doi: 10.1016/j.patcog.2019.05.028
|
WANG Guanshuo, YUAN Yufeng, CHEN Xiong, et al. Learning discriminative features with multiple granularities for person re-identification[C]. 2018 ACM Multimedia Conference on Multimedia Conference, Seoul, Korea, 2018: 274–282.
|
陈鸿昶, 吴彦丞, 李邵梅, 等. 基于行人属性分级识别的行人再识别[J]. 电子与信息学报, 2019, 41(9): 2239–2246. doi: 10.11999/JEIT180740
CHEN Hongchang, WU Yancheng, LI Shaomei, et al. Person re-identification based on attribute hierarchy recognition[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2239–2246. doi: 10.11999/JEIT180740
|
DAI Zuozhuo, CHEN Mingqiang, GU Xiaodong, et al. Batch DropBlock network for person re-identification and beyond[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 2019: 3691–3701.
|
WOO S, PARK J, LEE J Y, et al. Cbam: Convolutional block attention module[C]. The 15th European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 3–19.
|
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. 2017 IEEE conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2117–2125.
|
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
|
HERMANS A, BEYER L, and LEIBE B. In defense of the triplet loss for person re-identification[EB/OL]. https://arxiv.org/abs/1703.07737, 2017.
|
ZHENG Liang, SHEN Liyue, TIAN Lu, et al. Scalable person re-identification: A benchmark[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1116–1124.
|
RISTANI E, SOLERA F, ZOU R, et al. Performance measures and a data set for multi-target, multi-camera tracking[C]. 2016 European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 17–35.
|
WEI Longhui, ZHANG Shiliang, GAO Wen, et al. Person transfer GAN to bridge domain gap for person re-identification[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 79–88.
|
ZHONG Zhun, ZHENG Liang, CAO Donglin, et al. Re-ranking person re-identification with k-reciprocal encoding[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 1318–1327.
|
SALLEH S S, AZIZ N A A, MOHAMAD D, et al. Combining mahalanobis and jaccard distance to overcome similarity measurement constriction on geometrical shapes[J]. International Journal of Computer Science Issues, 2012, 9(4): 124–132.
|
ZHENG Zhedong, YANG Xiaodong, YU Zhiding, et al. Joint discriminative and generative learning for person re-identification[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 2138–2147.
|
HOU Ruibing, MA Bingpeng, CHANG Hong, et al. Interaction-and-aggregation network for person re-identification[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 9317–9326.
|
ZHOU Kaiyang, YANG Yongxin, CAVALLARO A, et al. Omni-Scale feature learning for person re-identification[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 2019: 3702–3712.
|
SUN Yifan, ZHENG Liang, DENG Weijian, et al. SVDNet for pedestrian retrieval[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 3800–3808.
|
CHEN Yanbei, ZHU Xiatian, and GONG Shaogang. Person re-identification by deep learning multi-scale representations[C]. 2017 IEEE International Conference on Computer Vision Workshops, Venice, Italy, 2017: 2590–2600.
|
ZHONG Zhun, ZHENG Liang, KANG Guoliang, et al. Random erasing data augmentation[EB/OL]. https://arxiv.org/abs/1708.04896, 2017.
|
WANG Yan, WANG Lequn, YOU Yurong, et al. Resource aware person re-identification across multiple resolutions[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8042–8051.
|
ALMAZAN J, GAJIC B, MURRAY N, et al. Re-ID done right: towards good practices for person re-identification[EB/OL]. https://arxiv.org/abs/1801.05339, 2018.
|