Advanced Search
Volume 42 Issue 12
Dec.  2020
Turn off MathJax
Article Contents
Bin SHEN, Hebiao WU, Shufeng ZHAO, Taiping CUI. Sparsity-aware Ordered Successive Interference Cancellation Based Multi-user Detection for Uplink mMTC[J]. Journal of Electronics & Information Technology, 2020, 42(12): 2960-2968. doi: 10.11999/JEIT190994
Citation: Bin SHEN, Hebiao WU, Shufeng ZHAO, Taiping CUI. Sparsity-aware Ordered Successive Interference Cancellation Based Multi-user Detection for Uplink mMTC[J]. Journal of Electronics & Information Technology, 2020, 42(12): 2960-2968. doi: 10.11999/JEIT190994

Sparsity-aware Ordered Successive Interference Cancellation Based Multi-user Detection for Uplink mMTC

doi: 10.11999/JEIT190994
Funds:  The National Key R&D Program of China (2017YFE0118900), The EU H2020 Project (734798)
  • Received Date: 2019-12-13
  • Rev Recd Date: 2020-06-23
  • Available Online: 2020-07-18
  • Publish Date: 2020-12-08
  • In massive Machine-Type Communication (mMTC) systems, when the user activity is exploited as a priori information for the receiver, the Sparsity-aware Maximum A Posteriori probability (S-MAP) criterion can be used to recover the sparse multi-user vectors over the uplink mMTC systems. In order to reduce the computational complexity of S-MAP detection, based on interference cancellation mechanism, an Improved Activity-aware Sorted QR Decomposition (IA-SQRD) algorithm is proposed in this paper. The IA-SQRD algorithm utilizes the final solution of the A-SQRD algorithm as the initial solution and the iterative interference cancellation operation is performed to improve further the detection performance. Following the same philosophy in improving the A-SQRD algorithm, the conventional Sparsity-Aware Successive Interference Cancellation (SA-SIC), Sorted QR Decomposition (SQRD), and Data-Dependent Sorting and regularization (DDS) algorithms are modified to enhance the performance, respectively. Simulation results verify that compared with the A-SQRD algorithm, a 3 dB gain is achieved by the proposed IA-SQRD algorithm when the Bit Error Rate (BER) is

    \begin{document}$2.5 \times {10^{ - 2}}$\end{document}

    , without significantly increasing the computational complexity. In addition, given different system configurations in terms of active probability and the length of spread spectrum sequence, the proposed IA-SQRD also exhibits better performance than that of the other algorithms mentioned in this paper.

  • loading
  • DAWY Z, SAAD W, GHOSH A, et al. Toward massive machine type cellular communications[J]. IEEE Wireless Communications, 2017, 24(1): 120–128. doi: 10.1109/MWC.2016.1500284WC
    GHAVIMI F and CHEN H H. M2M communications in 3GPP LTE/LTE-A networks: Architectures, service requirements, challenges, and applications[J]. IEEE Communications Surveys & Tutorials, 2015, 17(2): 525–549. doi: 10.1109/COMST.2014.2361626
    SHIM B and SONG B. Multiuser detection via compressive sensing[J]. IEEE Communications Letters, 2012, 16(7): 972–974. doi: 10.1109/LCOMM.2012.050112.111980
    CHOI J W, SHIM B, DING Yacong, et al. Compressed sensing for wireless communications: useful tips and tricks[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1527–1550. doi: 10.1109/COMST.2017.2664421
    ZHU Hao and GIANNAKIS G B. Exploiting sparse user activity in multiuser detection[J]. IEEE Transactions on Communications, 2011, 59(2): 454–465. doi: 10.1109/TCOMM.2011.121410.090570
    BARIK S and VIKALO H. Sparsity-aware sphere decoding: algorithms and complexity analysis[J]. IEEE Transactions on Signal Processing, 2014, 62(9): 2212–2225. doi: 10.1109/TSP.2014.2307836
    KNOOP B, MONSEES F, BOCKELMANN C, et al. Compressed sensing K-best detection for sparse multi-user communications[C]. The 22nd European Signal Processing Conference, Lisbon, Portugal, 2014: 1726–1730.
    ZHANG Xiaoxu, LIANG Yingchang, and FANG Jun. Novel Bayesian inference algorithms for multiuser detection in M2M communications[J]. IEEE Transactions on Vehicular Technology, 2017, 66(9): 7833–7848. doi: 10.1109/TVT.2017.2692776
    ZHANG Xiaoxu, LABEAU F, LIANG Yingchang, et al. Compressive sensing-based multiuser detection via iterative reweighed approach in M2M communications[J]. IEEE Wireless Communications Letters, 2018, 7(5): 764–767. doi: 10.1109/LWC.2018.2820704
    JEONG B K, SHIM B, and LEE K B. MAP-based active user and data detection for massive machine-type communications[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 8481–8494. doi: 10.1109/TVT.2018.2849621
    DI RENNA R B and DE LAMARE R C. Activity-aware multiple feedback SIC for massive machine-type communications[C]. The 12th International ITG Conference on Systems, Communications and Coding, Rostock, Germany, 2019: 233–238.
    丁子哲, 张贤达. 基于串行干扰消除的V-BLAST检测[J]. 电子学报, 2007, 35(S1): 19–24.

    DING Zizhe and ZHANG Xianda. V-BLAST detection based on successive interference cancellation[J]. Acta Electronica Sinica, 2007, 35(S1): 19–24.
    KNOOP B, MONSEES F, BOCKELMANN C, et al. Sparsity-aware successive interference cancellation with practical constraints[C]. The 17th International ITG Workshop on Smart Antennas, Stuttgart, Germany, 2013: 1–8.
    LIU Yi, YUEN C, CAO Xianghui, et al. Design of a scalable hybrid MAC protocol for heterogeneous M2M networks[J]. IEEE Internet of Things Journal, 2014, 1(1): 99–111. doi: 10.1109/JIOT.2014.2310425
    AHN J, SHIM B, and LEE K B. Sparsity-aware ordered successive interference cancellation for massive machine-type communications[J]. IEEE Wireless Communications Letters, 2018, 7(1): 134–137. doi: 10.1109/LWC.2017.2760831
    YANG Zhaohui, CHEN Ming, PAN Yijin, et al. Asynchronous detection for machine-to-machine systems with code division multiple access[C]. The 9th International Conference on Wireless Communications and Signal Processing, Nanjing, China, 2017.
    YANG Zhaohui, CHEN Ming, WANG Yinlu, et al. Compressive sensing based multiuser detection for asynchronous machine-to-machine systems[C]. The 9th International Conference on Wireless Communications and Signal Processing, Nanjing, China, 2017.
    BJÖRCK Å. Numerics of gram-schmidt orthogonalization[J]. Linear Algebra and Its Applications, 1994, 197/198: 297–316. doi: 10.1016/0024-3795(94)90493-6
    MANDLOI M and BHATIA V. Low-complexity near-optimal iterative sequential detection for uplink massive MIMO systems[J]. IEEE Communications Letters, 2017, 21(3): 568–571. doi: 10.1109/LCOMM.2016.2637366
    申滨, 吴和彪, 崔太平, 等. 基于最优索引广义正交匹配追踪的非正交多址系统多用户检测[J]. 电子与信息学报, 2020, 42(3): 621–628. doi: 10.11999/JEIT190270

    SHEN Bin, WU Hebiao, CUI Taiping, et al. An optimal number of indices aided gOMP algorithm for multi-user detection in NOMA system[J]. Journal of Electronics &Information Technology, 2020, 42(3): 621–628. doi: 10.11999/JEIT190270
    申滨, 赵书锋, 金纯. 基于迭代并行干扰消除的低复杂度大规模MIMO信号检测算法[J]. 电子与信息学报, 2018, 40(12): 2970–2978. doi: 10.11999/JEIT180111

    SHEN Bin, ZHAO Shufeng, and JIN Chun. Low complexity iterative parallel interference cancellation detection algorithms for massive MIMO systems[J]. Journal of Electronics &Information Technology, 2018, 40(12): 2970–2978. doi: 10.11999/JEIT180111
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (1607) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return