Citation: | Hong TANG, Dan LIU, LiShuang YAO, Yunfeng WANG, Zuofei PEI. Feature Selection Algorithm for Class Imbalanced Internet Traffic[J]. Journal of Electronics & Information Technology, 2021, 43(4): 923-930. doi: 10.11999/JEIT190992 |
XUE Yibo, ZHANG Luoshi, and WANG Dawei. Traffic classification: Issues and challenges[J]. Journal of Communications, 2013, 8(4): 240–248. doi: 10.12720/jcm.8.4.240-248
|
NGUYEN T T T and ARMITAGE G. A survey of techniques for internet traffic classification using machine learning[J]. IEEE Communications Surveys & Tutorials, 2008, 10(4): 56–76. doi: 10.1109/SURV.2008.080406
|
DAINOTTI A, PESCAPE A, and CLAFFY K C. Issues and future directions in traffic classification[J]. IEEE Network, 2012, 26(1): 35–40. doi: 10.1109/mnet.2012.6135854
|
MOORE A W and PAPAGIANNAKI K. Toward the accurate identification of network applications[C]. The 6th International Workshop on Passive and Active Network Measurement, Boston, USA, 2005: 41–54. doi: 10.1007/978-3-540-31966-5_4.
|
叶春明, 王珍, 陈思, 等. 基于节点行为特征分析的网络流量分类方法[J]. 电子与信息学报, 2014, 36(9): 2158–2165. doi: 10.3724/SP.J.1146.2013.01600
YE Chunming, WANG Zhen, CHEN Si, et al. Internet Traffic classification based on hosts behavior analysis[J]. Journal of Electronics &Information Technology, 2014, 36(9): 2158–2165. doi: 10.3724/SP.J.1146.2013.01600
|
DIAS K L, PONGELUPE M A, CAMINHAS W M, et al. An innovative approach for real-time network traffic classification[J]. Computer Networks, 2019, 158: 143–157. doi: 10.1016/j.comnet.2019.04.004
|
鲁刚, 张宏莉, 叶麟. P2P流量识别[J]. 软件学报, 2011, 22(6): 1281–1298. doi: 10.3724/SP.J.1001.2011.03995
LU Gang, ZHANG Hongli, and YE Lin. P2P traffic identification[J]. Journal of Software, 2011, 22(6): 1281–1298. doi: 10.3724/SP.J.1001.2011.03995
|
MOORE A W and ZUZV D. Internet traffic classification using Bayesian analysis techniques[J]. ACM SIGMETRICS Performance Evaluation Review, 2005, 33(1): 50–60. doi: 10.1145/1071690.1064220
|
DAI Lei, YUN Xiaochun, and XIAO Jun. Optimizing traffic classification using hybrid feature selection[C]. The 9th International Conference on Web-Age Information Management, Zhangjiajie, China, 2008: 520–525. doi: 10.1109/WAIM.2008.30.
|
XU Huali, YU Shuhao, CHEN Jiajun, et al. An improved firefly algorithm for feature selection in classification[J]. Wireless Personal Communications, 2018, 102(4): 2823–2834. doi: 10.1007/s11277-018-5309-1
|
张震, 汪斌强, 陈鸿昶, 等. 互联网中基于用户连接图的流量分类机制[J]. 电子与信息学报, 2013, 35(4): 958–964. doi: 10.3724/SP.J.1146.2012.01040
ZHANG Zhen, WANG Binqiang, CHEN Hongchang, et al. Internet traffic classification based on host connection graph[J]. Journal of Electronics &Information Technology, 2013, 35(4): 958–964. doi: 10.3724/SP.J.1146.2012.01040
|
SHAFIQ M, YU Xiangzhan, BASHIR A K, et al. A machine learning approach for feature selection traffic classification using security analysis[J]. The Journal of Supercomputing, 2018, 74(10): 4867–4892. doi: 10.1007/s11227-018-2263-3
|
SHI Hongtao, LI Hongping, ZHANG Dan, et al. An efficient feature generation approach based on deep learning and feature selection techniques for traffic classification[J]. Computer Networks, 2018, 132: 81–89. doi: 10.1016/j.comnet.2018.01.007
|
WANG Youwei and FENG Lizhou. A new hybrid feature selection based on multi-filter weights and multi-feature weights[J]. Applied Intelligence, 2019, 49(12): 4033–4057. doi: 10.1007/s10489-019-01470-z
|
王勇, 周慧怡, 俸皓, 等. 基于深度卷积神经网络的网络流量分类方法[J]. 通信学报, 2018, 39(1): 14–23. doi: 10.11959/j.issn.1000-436x.2018018
WANG Yong, ZHOU Huiyi, FENG Hao, et al. Network traffic classification method basing on CNN[J]. Journal on Communications, 2018, 39(1): 14–23. doi: 10.11959/j.issn.1000-436x.2018018
|
REN Xinming, GU Huaxi, and WEI Wenting. Tree-RNN: Tree structural recurrent neural network for network traffic classification[J]. Expert Systems with Applications, 2021, 167: 114363. doi: 10.1016/j.eswa.2020.114363
|
LIN S Z, SHI Yong, and XUE Zhi. Character-level intrusion detection based on convolutional neural networks[C]. 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 2018: 1–8. doi: 10.1109/IJCNN.2018.8488987.
|
夏栋梁, 刘玉坤, 鲁书喜. 基于蚁群算法和改进SSO的混合网络入侵检测方法[J]. 重庆邮电大学学报: 自然科学版, 2016, 28(3): 406–413. doi: 10.3979/j.issn.1673-825X.2016.03.021
XIA Dongliang, LIU Yukun, and LU Shuxi. Hybrid network intrusion detection method based on ant colony algorithm and improved simplified swarm optimization[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2016, 28(3): 406–413. doi: 10.3979/j.issn.1673-825X.2016.03.021
|
LOPEZ-MARTIN M, CARRO B, SANCHEZ-ESGUEVILLAS A, et al. Shallow neural network with kernel approximation for prediction problems in highly demanding data networks[J]. Expert Systems with Applications, 2019, 124: 196–208. doi: 10.1016/j.eswa.2019.01.063
|
DASH M and LIU Huan. Consistency-based search in feature selection[J]. Artificial Intelligence, 2003, 151(1/2): 155–176. doi: 10.1016/s0004-3702(03)00079-1
|
ZHANG Hongli, LU Gang, QASSRAWI M T, et al. Feature selection for optimizing traffic classification[J]. Computer Communications, 2012, 35(12): 1457–1471. doi: 10.1016/j.comcom.2012.04.012
|
崔自峰, 徐宝文, 张卫丰, 等. 一种近似Markov Blanket最优特征选择算法[J]. 计算机学报, 2007, 30(12): 2074–2081. doi: 10.3321/j.issn:0254-4164.2007.12.002
CUI Zifeng, XU Baowen, ZHANG Weifeng, et al. An approximate markov blanket feature selection algorithm[J]. Chinese Journal of Computers, 2007, 30(12): 2074–2081. doi: 10.3321/j.issn:0254-4164.2007.12.002
|
MOORE A W. Dataset[EB/OL]. https://www.cl.cam.ac.uk/research/srg/netos/nprobe/data/papers/sigmetrics/index.html, 2005.
|