Advanced Search
Volume 43 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
Shikun DAI, Zhenchong OUYANG, Yinming ZHOU, Qianjiang ZHANG, Kun LI, Dongdong ZHAO, Qingrui CHEN, Jiaxuan LING. Frequency Domain 2.5D GPR Forward Modeling[J]. Journal of Electronics & Information Technology, 2021, 43(1): 145-153. doi: 10.11999/JEIT190988
Citation: Shikun DAI, Zhenchong OUYANG, Yinming ZHOU, Qianjiang ZHANG, Kun LI, Dongdong ZHAO, Qingrui CHEN, Jiaxuan LING. Frequency Domain 2.5D GPR Forward Modeling[J]. Journal of Electronics & Information Technology, 2021, 43(1): 145-153. doi: 10.11999/JEIT190988

Frequency Domain 2.5D GPR Forward Modeling

doi: 10.11999/JEIT190988
Funds:  The National Key Research and Development Project (2018YFC0603602), The National Natural Science Foundation of China (41574127), The Project for the Independent Exploration of Graduate Students at Central South University (2018zzts707, 2018zzts200, 2018zzts203)
  • Received Date: 2019-12-11
  • Rev Recd Date: 2020-08-08
  • Available Online: 2020-08-21
  • Publish Date: 2021-01-15
  • Based on the governing equations satisfied by the electromagnetic method of the frequency domain, the finite element method is used to realize the forward simulation of 2.5-Dimensional a (2.5D) Ground Penetrating Radar (GPR) in the frequency domain. The law of the electromagnetic field spectrum in the wavenumber domain with the relative permittivity and the transmission and reception distance is analyzed in detail. The selection of the wave number in the 2.5D GPR forward modeling simulation is discussed. Based on the comparison of the computational efficiency of the Open MP parallel algorithm and the serial algorithm, the results show that the 2.5D GPR numerical simulation method in the frequency domain has the characteristics of high efficiency, high precision, and high parallelism. It provides important theoretical reference and technical support for radar forward modeling, and provides an important foundation for GPR full waveform inversion.

  • loading
  • 屈乐乐, 方广有, 杨天虹. 压缩感知理论在频率步进探地雷达偏移成像中的应用[J]. 电子与信息学报, 2011, 33(1): 21–26. doi: 10.3724/SP.J.1146.2009.01528

    QU Lele, FANG Guangyou, and YANG Tianhong. The application of compressed sensing to stepped-frequency ground penetrating radar migration imaging[J]. Journal of Electronics &Information Technology, 2011, 33(1): 21–26. doi: 10.3724/SP.J.1146.2009.01528
    郑适, 张安学, 岳思橙, 等. 基于改进粒子群优化的探地雷达波形反演算法[J]. 电子与信息学报, 2014, 36(11): 2717–2722. doi: 10.3724/SP.J.1146.2013.01979

    ZHENG Shi, ZHANG Anxue, YUE Sicheng, et al. Ground penetrating radar inversion algorithm based on improved particle swarm optimization[J]. Journal of Electronics &Information Technology, 2014, 36(11): 2717–2722. doi: 10.3724/SP.J.1146.2013.01979
    YEE K. Numerical solution of initial boundary value problems involving Maxwell’s Equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1996, 14(3): 302–307.
    BERGMANN T, ROBERTSSON J O A, and HOLLIGER K. Finite-difference modeling of electromagnetic wave propagation in dispersive and attenuating media[J]. Geophysics, 1998, 63(3): 856–867. doi: 10.1190/1.1444396
    IRVING J and KNIGHT R. Numerical modeling of ground-penetrating radar in 2-D using MATLAB[J]. Computers & Geosciences, 2006, 32(9): 1247–1258. doi: 10.1016/j.cageo.2005.11.006
    刘四新, 曾昭发. 频散介质中地质雷达波传播的数值模拟[J]. 地球物理学报, 2007, 50(1): 320–326. doi: 10.3321/j.issn:0001-5733.2007.01.040

    LIU Sixin and ZENG Zhaofa. Numerical simulation for Ground Penetrating Radar wave propagation in the dispersive medium[J]. Chinese Journal of Geophysics, 2007, 50(1): 320–326. doi: 10.3321/j.issn:0001-5733.2007.01.040
    冯德山, 杨良勇, 王珣. 探地雷达FDTD数值模拟中不分裂卷积完全匹配层对倏逝波的吸收效果研究[J]. 地球物理学报, 2016, 59(12): 4733–4746. doi: 10.6038/cjg20161232

    FENG Deshan, YANG Liangyong, and WANG Xun. The unsplit convolutional perfectly matched layer absorption performance analysis of evanescent wave in GPR FDTD forward modeling[J]. Chinese Journal of Geophysics, 2016, 59(12): 4733–4746. doi: 10.6038/cjg20161232
    底青云, 王妙月. 雷达波有限元仿真模拟[J]. 地球物理学报, 1999, 42(6): 818–825. doi: 10.3321/j.issn:0001-5733.1999.06.012

    DI Qingyun and WANG Miaoyue. 2D finite element modeling for radar wave[J]. Chinese Journal of Geophysics, 1999, 42(6): 818–825. doi: 10.3321/j.issn:0001-5733.1999.06.012
    杜华坤, 冯德山, 汤井田. 基于Delaunay三角形的非结构化有限元GPR正演[J]. 中南大学学报: 自然科学版, 2015, 46(4): 1326–1334. doi: 10.11817/j.issn.1672-7207.2015.04.022

    DU Huakun, FENG Deshan, and TANG Jingtian. GPR simulation by finite element method of unstructured grid based on Delaunay triangulation[J]. Journal of Central South University:Science and Technology, 2015, 46(4): 1326–1334. doi: 10.11817/j.issn.1672-7207.2015.04.022
    石明, 冯德山, 王洪华, 等. 各向异性介质GPR非结构化网格有限元正演[J]. 中南大学学报: 自然科学版, 2016, 47(5): 1660–1667. doi: 10.11817/j.issn.1672-7207.2016.05.027

    SHI Ming, FENG Deshan, WANG Honghua, et al. GPR numerical simulation for anisotropic medium by using finite element method based on unstructured meshes[J]. Journal of Central South University:Science and Technology, 2016, 47(5): 1660–1667. doi: 10.11817/j.issn.1672-7207.2016.05.027
    王洪华, 吕玉增, 王敏玲, 等. 基于PML边界条件的二阶电磁波动方程GPR时域有限元模拟[J]. 地球物理学报, 2019, 62(5): 1929–1941. doi: 10.6038/cjg2019M0610

    WANG Honghua, LÜ Yuzeng, WANG Minling, et al. A perfectly matched layer for second order electromagnetic wave simulation of GPR by finite element time domain method[J]. Chinese Journal of Geophysics, 2019, 62(5): 1929–1941. doi: 10.6038/cjg2019M0610
    孟旭, 刘四新, 傅磊, 等. 基于对数目标函数的跨孔雷达频域波形反演[J]. 地球物理学报, 2016, 59(5): 1875–1887. doi: 10.6038/cjg20160530

    MENG Xu, LIU Sixin, FU Lei, et al. Frequency domain waveform inversion of cross-hole GPR data based on a logarithmic objective function[J]. Chinese Journal of Geophysics, 2016, 59(5): 1875–1887. doi: 10.6038/cjg20160530
    戴世坤, 王顺国, 张钱江, 等. 频率域可控源电磁法2.5D正反演[J]. 中国有色金属学报, 2013, 23(9): 2513–2523. doi: 10.19476/j.ysxb.1004.0609.2013.09.022

    DAI Shikun, WANG Shunguo, ZHANG Qianjiang, et al. 2.5D forward and inversion of CSEM in frequency domain[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(9): 2513–2523. doi: 10.19476/j.ysxb.1004.0609.2013.09.022
    薛东川, 戴世坤. 频率域2.5维电磁测深有限元模拟中的吸收边界条件[J]. 中国石油大学学报: 自然科学版, 2008, 32(6): 57–61. doi: 10.3321/j.issn:1673-5005.2008.06.011

    XUE Dongchuan and DAI Shikun. Absorbing boundary condition for simulating 2.5-D electromagnetic sounding in frequency domain by finite element method[J]. Journal of China University of Petroleum:Edition of Natural Science, 2008, 32(6): 57–61. doi: 10.3321/j.issn:1673-5005.2008.06.011
    胡涂. 探地雷达2.5D频率域数值模拟[D]. [硕士论文], 中南大学, 2014.

    HU Tu. Frequency domain 2.5D GPR Forward Modeling[D]. [Master dissertation], Central South University, 2014.
    SCHENK O and GÄRTNER K. Solving unsymmetric sparse systems of linear equations with PARDISO[C]. International Conference on Computational Science, The Netherlands, 2002. doi: 10.1007/3-540-46080-2_37.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (2080) PDF downloads(99) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return