Citation: | Nian WANG, Xuyang HU, Fan ZHU, Jun TANG. Single-view 3D Reconstruction Algorithm Based on View-aware[J]. Journal of Electronics & Information Technology, 2020, 42(12): 3053-3060. doi: 10.11999/JEIT190986 |
EIGEN D, PUHRSCH C, and FERGUS R. Depth map prediction from a single image using a multi-scale deep network[C]. The 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2366–2374.
|
WU Jiajun, WANG Yifan, XUE Tianfan, et al. Marrnet: 3D shape reconstruction via 2.5D sketches[C]. The 31st Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 540–550.
|
WANG Nanyang, ZHANG Yinda, LI Zhuwen, et al. Pixel2mesh: Generating 3D mesh models from single RGB images[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 55–71. doi: 10.1007/978-3-030-01252-6_4.
|
TANG Jiapeng, HAN Xiaoguang, PAN Junyi, et al. A skeleton-bridged deep learning approach for generating meshes of complex topologies from single RGB images[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 4536–4545. doi: 10.1109/cvpr.2019.00467.
|
CHOY C B, XU Danfei, GWAK J Y, et al. 3D-R2N2: A unified approach for single and multi-view 3D object reconstruction[C]. The 14th European Conference on Computer Vision, Amsterdam, the Netherlands, 2016: 628–644. doi: 10.1007/978-3-319-46484-8_38.
|
HU Xuyang, ZHU Fan, LIU Li, et al. Structure-aware 3D shape synthesis from single-view images[C]. 2018 British Machine Vision Conference, Newcastle, UK, 2018.
|
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. The 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
|
张惊雷, 厚雅伟. 基于改进循环生成式对抗网络的图像风格迁移[J]. 电子与信息学报, 2020, 42(5): 1216–1222. doi: 10.11999/JEIT190407
ZHANG Jinglei and HOU Yawei. Image-to-image translation based on improved cycle-consistent generative adversarial network[J]. Journal of Electronics &Information Technology, 2020, 42(5): 1216–1222. doi: 10.11999/JEIT190407
|
陈莹, 陈湟康. 基于多模态生成对抗网络和三元组损失的说话人识别[J]. 电子与信息学报, 2020, 42(2): 379–385. doi: 10.11999/JEIT190154
CHEN Ying and CHEN Huangkang. Speaker recognition based on multimodal generative adversarial nets with triplet-loss[J]. Journal of Electronics &Information Technology, 2020, 42(2): 379–385. doi: 10.11999/JEIT190154
|
WANG Tingchun, LIU Mingyu, ZHU Junyan, et al. High-resolution image synthesis and semantic manipulation with conditional gans[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8798–8807. doi: 10.1109/cvpr.2018.00917.
|
ULYANOV D, VEDALDI A, and LEMPITSKY V. Instance normalization: The missing ingredient for fast stylization[EB/OL]. https://arxiv.org/abs/1607.08022, 2016.
|
XU Bing, WANG Naiyan, CHEN Tianqi, et al. Empirical evaluation of rectified activations in convolutional network[EB/OL]. https://arxiv.org/abs/1505.00853, 2015.
|
GOKASLAN A, RAMANUJAN V, RITCHIE D, et al. Improving shape deformation in unsupervised image-to-image translation[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 662–678. doi: 10.1007/978-3-030-01258-8_40.
|
MAO Xudong, LI Qing, XIE Haoran, et al. Least squares generative adversarial networks[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2813–2821. doi: 10.1109/iccv.2017.304.
|
GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of wasserstein GANs[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 5767–5777.
|
LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 105–114. doi: 10.1109/CVPR.2017.19.
|
SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. https://arxiv.org/abs/1409.1556, 2014.
|
KINGMA D P and BA J. Adam: A method for stochastic optimization[EB/OL]. https://arxiv.org/abs/1412.6980, 2014.
|
CHANG A X, FUNKHOUSER T, GUIBAS L, et al. Shapenet: An information-rich 3D model repository[EB/OL]. https://arxiv.org/abs/1512.03012, 2015.
|
GRABNER A, ROTH P M, and LEPETIT V. 3D pose estimation and 3D model retrieval for objects in the wild[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3022–3031. doi: 10.1109/cvpr.2018.00319.
|
HE Xinwei, ZHOU Yang, ZHOU Zhichao, et al. Triplet-center loss for multi-view 3D object retrieval[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 1945–1954. doi: 10.1109/cvpr.2018.00208.
|