Advanced Search
Volume 42 Issue 12
Dec.  2020
Turn off MathJax
Article Contents
Changhong CHEN, Tengfei PENG, Zongliang GAN. Aurora Image Classification and Retrieval Method Based on Deep Hashing Algorithm[J]. Journal of Electronics & Information Technology, 2020, 42(12): 3029-3036. doi: 10.11999/JEIT190984
Citation: Changhong CHEN, Tengfei PENG, Zongliang GAN. Aurora Image Classification and Retrieval Method Based on Deep Hashing Algorithm[J]. Journal of Electronics & Information Technology, 2020, 42(12): 3029-3036. doi: 10.11999/JEIT190984

Aurora Image Classification and Retrieval Method Based on Deep Hashing Algorithm

doi: 10.11999/JEIT190984
Funds:  The National Natural Science Foundation of China (61501260), The Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX17_0776)
  • Received Date: 2019-12-09
  • Rev Recd Date: 2020-08-09
  • Available Online: 2020-08-13
  • Publish Date: 2020-12-08
  • It is of great significance to classify and retrieve the vast amount of aurora data with various forms and complex changes for the further study of the physical mechanism of the geomagnetic field and spatial information. In this paper, an end-to-end deep hashing algorithm for aurora image classification and retrieval is proposed based on the good performance of CNN in image feature extraction and the fact that hash coding can meet the retrieval time requirment of large-scale image retrieval. Firstly, Spatial Pyramidal Pooling(SPP) and Power Mean Transformtion(PMT) are embedded in Convolutional Neural Network (CNN) to extract multi-scale region information in the image. Secondly, a Hash layer is added between the fully connected layer to Mean Average Precision(MAP) the high-dimensional semantic information that can best represent the image into a compact binary Hash code, and the hamming distance is used to measure the similarity between the image pairs in the low-dimensional space. Finally, a multi-task learning mechanism is introduced to design the loss fuction by making full use of similarity informtion between the image label information and the image pairs. The loss of classification layer and Hash layer are combined as the optimization objective, so that a better semantic similarity between Hash code can be maintained, and the retrieval performance can be effectively improved. The results show that the proposed method outperforms the state-of-art retrieval algorithms on aurora dataset and CIFAR-10 datasets, and it can also be used in aurora image classification effectively.
  • loading
  • WANG Qian, LIANG Jimin, HU Zejun, et al. Spatial texture based automatic classification of dayside aurora in all-sky images[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2010, 72(5/6): 498–508. doi: 10.1016/j.jastp.2010.01.011
    韩冰, 杨辰, 高新波. 融合显著信息的LDA极光图像分类[J]. 软件学报, 2013, 24(11): 2758–2766. doi: 10.3724/SP.J.1001.2013.04481

    HAN Bing, YANG Chen, and GAO Xinbo. Aurora image classification based on LDA combining with saliency information[J]. Journal of Software, 2013, 24(11): 2758–2766. doi: 10.3724/SP.J.1001.2013.04481
    SYRJÄSUO M T, DONOVAN E F, and COGGER L L. Content-based retrieval of auroral images - thousands of irregular shapes[C]. The 4th IASTED International Conference Visualization, Imaging, and Image Processing, Marbella, Spain, 2004.
    FU Rong, GAO Xinbo, LI Xuelong, et al. An integrated aurora image retrieval system: Aurora Eye[J]. Journal of Visual Communication and Image Representation, 2010, 21(8): 787–797. doi: 10.1016/j.jvcir.2010.06.002
    YANG Xi, GAO Xinbo, SONG Bin, et al. Aurora image search with contextual CNN feature[J]. Neurocomputing, 2018, 281: 67–77. doi: 10.1016/j.neucom.2017.11.059
    葛芸, 马琳, 江顺亮, 等. 基于高层特征图组合及池化的高分辨率遥感图像检索[J]. 电子与信息学报, 2019, 41(10): 2487–2494. doi: 10.11999/JEIT190017

    GE Yun, MA Lin, JIANG Shunliang, et al. The combination and pooling based on high-level feature map for high-resolution remote sensing image retrieval[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2487–2494. doi: 10.11999/JEIT190017
    刘冶, 潘炎, 夏榕楷, 等. FP-CNNH: 一种基于深度卷积神经网络的快速图像哈希算法[J]. 计算机科学, 2016, 43(9): 39–46, 51. doi: 10.11896/j.issn.1002-137X.2016.09.007

    LIU Ye, PAN Yan, XIA Rongkai, et al. FP-CNNH: A fast image hashing algorithm based on deep convolutional neural network[J]. Computer Science, 2016, 43(9): 39–46, 51. doi: 10.11896/j.issn.1002-137X.2016.09.007
    LI Wujun, WANG Sheng, and KANG Wangcheng. Feature learning based deep supervised hashing with pairwise labels[C]. The 25th International Joint Conference on Artificial Intelligence, New York, USA, 2016: 1711–1717.
    LIU Haomiao, WANG Ruiping, SHAN Shiguang, et al. Deep supervised hashing for fast image retrieval[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2064–2072. doi: 10.1109/CVPR.2016.227.
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. Imagenet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097–1105.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904–1916. doi: 10.1109/TPAMI.2015.2389824
    赵斐, 张文凯, 闫志远, 等. 基于多特征图金字塔融合深度网络的遥感图像语义分割[J]. 电子与信息学报, 2019, 41(10): 2525–2531. doi: 10.11999/JEIT190047

    ZHAO Fei, ZHANG Wenkai, YAN Zhiyuan, et al. Multi-feature map pyramid fusion deep network for semantic segmentation on remote sensing data[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2525–2531. doi: 10.11999/JEIT190047
    ZHANG Chenlin and WU Jianxin. Improving CNN linear layers with power mean non-linearity[J]. Pattern Recognition, 2019, 89: 12–21. doi: 10.1016/j.patcog.2018.12.029
    JEGOU H, DOUZE M, and SCHMID C. Hamming embedding and weak geometric consistency for large scale image search[C]. The 10th European Conference on Computer Vision, Marseille, France, 2008: 304–317. doi: 10.1007/978-3-540-88682-2_24.
    XIA Yan, HE Kaiming, WEN Fang, et al. Joint inverted indexing[C]. 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 2013: 3416–3423. doi: 10.1109/ICCV.2013.424.
    TOLIAS G, SICRE R, and JÉGOU H. Particular object retrieval with integral max-pooling of CNN activations[C]. The 4th International Conference on Learning Representations, San Juan, Puerto Rico, 2016: 1–12.
    LI Yang, XU Yulong, WANG Jiabao, et al. MS-RMAC: Multiscale regional maximum activation of convolutions for image retrieval[J]. IEEE Signal Processing Letters, 2017, 24(5): 609–613. doi: 10.1109/LSP.2017.2665522
    DATAR M, IMMORLICA N, INDYK P, et al. Locality- sensitive hashing scheme based on p-stable distributions[C]. The 20th Annual Symposium on Computational Geometry, Brooklyn, USA, 2004: 253–262. doi: 10.1145/997817.997857.
    GONG Yunchao and LAZEBNIK S. Iterative quantization: A procrustean approach to learning binary codes[C]. The 24th IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2011: 817–824. doi: 10.1109/CVPR.2011.5995432.
    LIU Wei, WANG Jun, JI Rongrong, et al. Supervised hashing with kernels[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 2074–2081. doi: 10.1109/CVPR.2012.6247912.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(6)

    Article Metrics

    Article views (1681) PDF downloads(113) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return