Advanced Search
Volume 43 Issue 5
May  2021
Turn off MathJax
Article Contents
Shuhong ZHAO, Shaowu DONG, Shanshan BAI, Zhe GAO. Research on An Optimized Frequency Steering Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1457-1464. doi: 10.11999/JEIT190980
Citation: Shuhong ZHAO, Shaowu DONG, Shanshan BAI, Zhe GAO. Research on An Optimized Frequency Steering Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1457-1464. doi: 10.11999/JEIT190980

Research on An Optimized Frequency Steering Algorithm

doi: 10.11999/JEIT190980
Funds:  The National Natural Science Foundation of China (11773030), The Youth Innovation Promotion Association Foundation of the Chinese Academy of Sciences(2020402)
  • Received Date: 2019-11-20
  • Rev Recd Date: 2020-11-17
  • Available Online: 2020-12-03
  • Publish Date: 2021-05-18
  • In order to meet the increasing demands for the performance of time in various application fields, an optimized frequency steering algorithm is designed and implemented in this paper, which is mainly divided into two parts: paper time scale calculation and physical signal implementation. ALGOS algorithm is adopted for the paper time scale calculation, and then an accurate and reliable time scale is calculated by using real-time atomic clock data and Circular T data, which ensures the accuracy and real-time steering reference scale. Real-time physical signals are implemented using an optimal Linear Quadratic Gaussian (LQG) control algorithmand and Kalman algorithm. By adjusting parameters in real time, the optimal frequency steering value is generated, this value is sent to the frequency adjustment device, and finally the output of the high-precision time signal is realized. The entire steering system is closed-loop. Based on time keeping system and atomic clock assemble, a test platform is built, and the algorithm is used to perform a 140 days frequency steering on a hydrogen maser clock, and finally the performance evaluation of the output physical signal is performed. Experimental results show that this algorithm improves effectively the accuracy and stability of the output physical signal. Compared with Universal Time Co-ordinated (UTC), the output time signal maintains a time deviation within ± 3 ns, and its stability is better than 5×10–16 at 30 days.
  • loading
  • [1]
    杨文哲, 杨宏雷, 王学运, 等. 高精度光纤时间频率一体化传递[J]. 电子与信息学报, 2019, 41(7): 1579–1586. doi: 10.11999/JEIT180807

    YANG Wenzhe, YANG Honglei, WANG Xueyun, et al. High precision time and frequency integration transfer via optical fiber[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1579–1586. doi: 10.11999/JEIT180807
    [2]
    PANFILO G, HARMEGNIES A, and TISSERAND L. A new prediction algorithm for the generation of International Atomic Time[J]. Metrologia, 2012, 49(1): 49–56. doi: 10.1088/0026-1394/49/1/008
    [3]
    侯志强, 王帅, 廖秀峰, 等. 基于样本质量估计的空间正则化自适应相关滤波视觉跟踪[J]. 电子与信息学报, 2019, 41(8): 1983–1991. doi: 10.11999/JEIT180921

    HOU Zhiqiang, WANG Shuai, LIAO Xiufeng, et al. Adaptive regularized correlation filters for visual tracking based on sample quality estimation[J]. Journal of Electronics &Information Technology, 2019, 41(8): 1983–1991. doi: 10.11999/JEIT180921
    [4]
    PETIT G. Towards an optimal weighting scheme for TAI computation[J]. Metrologia, 2003, 40(3): 252–256. doi: 10.1088/0026-1394/40/3/304
    [5]
    ZHAO Shuhong, DONG Shaowu, QU Lili, et al. A new steering strategy for UTC(NTSC) based on hydrogen maser[C]. Proceedings of 2016 IEEE International Frequency Control Symposium (IFCS), New Orleans, USA, 2016: 227–231.
    [6]
    ZHAO Shuhong, WANG Zhengming, and YIN Dongshan. A study on the steering strategy for the master clock[J]. Chinese Astronomy and Astrophysics, 2015, 39(1): 118–128. doi: 10.1016/j.chinastron.2015.01.008
    [7]
    GREENHALL C A. A review of reduced Kalman filters for clock ensembles[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59(3): 491–496. doi: 10.1109/TUFFC.2012.2219
    [8]
    王雪梅, 刘文强, 邓自立. 不确定系统鲁棒协方差交叉融合稳态Kalman滤波器[J]. 电子与信息学报, 2015, 37(8): 1900–1905. doi: 10.11999/JEIT141515

    WANG Xuemei, LIU Wenqiang, and DENG Zili. Robust covariance intersection fusion steady-state Kalman filter for uncertain systems[J]. Journal of Electronics &Information Technology, 2015, 37(8): 1900–1905. doi: 10.11999/JEIT141515
    [9]
    耿友林, 解成博, 尹川, 等. 基于卡尔曼滤波的接收信号强度指示差值定位算法[J]. 电子与信息学报, 2019, 41(2): 455–461. doi: 10.11999/JEIT180268

    GENG Youlin, XIE Chengbo, YIN Chuan, et al. Received signal strength indication difference location algorithm based on Kalman filter[J]. Journal of Electronics &Information Technology, 2019, 41(2): 455–461. doi: 10.11999/JEIT180268
    [10]
    KOPPANG P and LELAND R. Linear quadratic stochastic control of atomic hydrogen masers[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1999, 46(3): 517–522. doi: 10.1109/58.764838
    [11]
    GÖDEL M and FURTHNER J. Robust ensemble time onboard a satellite[C]. Proceedings of the 48th Annual Precise Time and Time Interval Systems and Applications Meeting, Monterey, USA, 2017: 26–43.
    [12]
    张泉, 尹达一, 张茜丹, 等. 压电执行器动态迟滞建模与LQG最优控制器设计[J]. 光学精密工程, 2018, 26(11): 2744–2753. doi: 10.3788/OPE.20182611.2744

    ZHANG Quan, YIN Dayi, ZHANG Xidan, et al. Dynamic hysteresis modeling and LQG optimal controller design of piezoelectric actuators[J]. Optics and Precision Engineering, 2018, 26(11): 2744–2753. doi: 10.3788/OPE.20182611.2744
    [13]
    崔挺, 严运兵, 肖小城. LQG/LTR控制在二级倒立摆系统中的应用研究[J]. 武汉科技大学学报, 2014, 37(4): 300–304.

    CUI Ting, YAN Yunbing, and XIAO Xiaocheng. Application of LQG/LTR control in double inverted pendulum system[J]. Journal of Wuhan University of Science and Technology, 2014, 37(4): 300–304.
    [14]
    DAVIS J A, GREENHALL C A, and STACEY P W. A Kalman filter clock algorithm for use in the presence of flicker frequency modulation noise[J]. Metrologia, 2005, 42(1): 1–10. doi: 10.1088/0026-1394/42/1/001
    [15]
    PANFILO G and TAVELLA P. Atomic clock prediction based on stochastic differential equations[J]. Metrologia, 2008, 45(6): 108–116. doi: 10.1088/0026-1394/45/6/S16
    [16]
    FELBACH D, SOUALLE F, STOPFKUCHEN L, et al. Clock monitoring and control units for navigation satellites[C]. Proceedings of 2010 IEEE International Frequency Control Symposium, Newport Beach, USA, 2010: 474–479.
    [17]
    白杉杉, 董绍武, 赵书红, 等. 主动型氢原子钟性能监测及评估方法研究[J]. 天文学报, 2018, 59(6): 56–66.

    BAI Shanshan, DONG Shaowu, ZHAO Shuhong, et al. Research on the method of performance monitoring and evaluation for active hydrogen maser[J]. Acta Astronomica Sinica, 2018, 59(6): 56–66.
    [18]
    BAI Shanshan, ZHAO Shuhong, DONG Shaowu, et al. Joint time scale algorithm of UTC(NTSC) and UTC(SU)[C]. European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC), Olympic Valley, USA, 2018: 197–201.
    [19]
    ZUCCA C and TAVELLA P. The clock model and its relationship with the Allan and related variances[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(2): 289–296. doi: 10.1109/TUFFC.2005.1406554
    [20]
    FARINA M, GALLEANI L, TAVELLA P, et al. A control theory approach to clock steering techniques[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(10): 2257–2270. doi: 10.1109/TUFFC.2010.1687
    [21]
    ZHAO Shuhong, YIN Dongshan, DONG Shaowu, et al. A new steering strategy for UTC(NTSC)[C]. Proceedings of the 1st IEEE International Frequency Control Symposium (IFCS), Taipei, China, 2014: 210–213.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (1017) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return