Citation: | Qi WU, Hongchang CHEN. Minimal Coverage Model for Fault-Tolerant Controller Placement in Software Defined Networks[J]. Journal of Electronics & Information Technology, 2020, 42(12): 2849-2856. doi: 10.11999/JEIT190972 |
In order to deploy fault-tolerant Software-Defined Networks(SDN), many controllers must be physically distributed among different network devices. However, a large number of controllers bring huge costs, which limits severely the application of the fault-tolerant control plane to the real networks. In order to solve the above problems, the fault-tolerant control plane is analyzed and a mathematical model that covers all switches using the least number of controllers is constructed. Then, a heuristic controller placement algorithm based on the local search strategy is proposed to avoid the local optimal solution. The experimental results show that compared with other algorithms, the proposed algorithm can effectively reduce the number of required controllers while ensuring network fault tolerance requirements in different scale networks.
SCOTT-HAYWARD S, NATARAJAN S, and SEZER S. A survey of security in software defined networks[J]. IEEE Communications Surveys & Tutorials, 2016, 18(1): 623–654. doi: 10.1109/COMST.2015.2453114
|
KILLI B P R and RAO S V. Optimal model for failure foresight capacitated controller placement in software defined networks[J]. IEEE Communications Letters, 2016, 20(6): 1108–1111. doi: 10.1109/LCOMM.2016.2550026
|
LI He, LI Peng, GUO Song, et al. Byzantine–resilient secure software–defined networks with multiple controllers in cloud[J]. IEEE Transactions on Cloud Computing, 2014, 2(4): 436–447. doi: 10.1109/TCC.2014.2355227
|
李军飞, 胡宇翔, 邬江兴. 基于拜占庭容错提高SDN控制层可靠性的研究[J]. 计算机研究与发展, 2017, 54(5): 952–960. doi: 10.7544/issn1000-1239.2017.20160055
LI Junfei, HU Yuxiang, and WU Jiangxing. Research on improving the control plane’s reliability in SDN based on byzantine fault-tolerance[J]. Journal of Computer Research and Development, 2017, 54(5): 952–960. doi: 10.7544/issn1000-1239.2017.20160055
|
WOOD T, SINGH R, VENKATARAMANI A, et al. ZZ and the art of practical BFT execution[C]. The 6th Conference on Computer Systems, Salzburg, Austria, 2011: 123–138. doi: 10.1145/1966445.1966457.
|
ROS F J and RUIZ P M. On reliable controller placements in software–defined networks[J]. Computer Communications, 2016, 77: 41–51. doi: 10.1016/j.comcom.2015.09.008
|
史久根, 谢熠君, 孙立. 软件定义网络中面向时延和负载的多控制器放置策略[J]. 电子与信息学报, 2019, 41(8): 1869–1876. doi: 10.11999/JEIT181053
SHI Jiugen, XIE Yijun, and SUN Li. Multi–controller placement strategy based on latency and load in software defined network[J]. Journal of Electronics &Information Technology, 2019, 41(8): 1869–1876. doi: 10.11999/JEIT181053
|
史久根, 邾伟, 贾坤荥, 等. 软件定义网络中基于负载均衡的多控制器部署算法[J]. 电子与信息学报, 2018, 40(2): 455–461. doi: 10.11999/JEIT170464
SHI Jiugen, ZHU Wei, JIA Kunying, et al. Multi–controller deployment algorithm based on load balance in software defined network[J]. Journal of Electronics &Information Technology, 2018, 40(2): 455–461. doi: 10.11999/JEIT170464
|
KILLI B P R and RAO S V. Controller placement with planning for failures in software defined networks[C]. 2016 IEEE International Conference on Advanced Networks and Telecommunications Systems, Bangalore, India, 2016: 1–6. doi: 10.1109/ANTS.2016.7947795.
|
ELDEFRAWY K and KACZMAREK T. Byzantine fault tolerant Software–Defined Networking (SDN) controllers[C]. 2016 IEEE 40th Annual Computer Software and Applications Conference, Atlanta, USA, 2016: 208–213. doi: 10.1109/COMPSAC.2016.76.
|
JIMÉNEZ Y, CERVELLÓ-PASTOR C, and GARCIA A J. On the controller placement for designing a distributed SDN control layer[C]. 2014 IFIP Networking Conference, Trondheim, Norway, 2014: 1–9. doi: 10.1109/IFIPNetworking.2014.6857117.
|
XIE Junjie, GUO Deke, ZHU Xiaomin, et al. Minimal fault–tolerant coverage of controllers in IaaS datacenters[J]. IEEE Transactions on Services Computing, 2017, 36(3): 1–14. doi: 10.1109/TSC.2017.2753260
|
GAREY M R and JOHNSON D S. Computers and INTRACTABILITY: A GUIDE to the Theory of NP–Completeness[M]. New York: W. H. Freeman and Company, 1979: 199–201.
|