
Citation: | Gang ZHANG, Jinhui LIU, Tianqi ZHANG. A Novel Noise Reduction Differential Chaos Shift Keying System Based on Quadrature Modulation[J]. Journal of Electronics & Information Technology, 2021, 43(2): 445-453. doi: 10.11999/JEIT190955 |
To overcome the shortcomings of low transmission rate of Noise Reduction Differential Chaos Shift Keying (NR-DCSK), a novel Noise Reduction Differential Chaos Shift Keying system based on Quadrature Modulation (QM-NRDCSK) is proposed. The generator generates two chaotic sequences, the reference signal of each channel is P-time repetition of the information-bearing signal. The information of different users is distinguished by different time slots, and the two signals are transmitted on the same frequency band by using quadrature modulation. The reference signal of each channel is averaged P times by the moving average filter at the receiving end, and then non-coherently demodulated with the information signal. The correctness of the theoretical derivation is verified by simulations in AWGN and multi-path Rayleigh fading channels, and it shows that the system can effectively improve the transmission rate and has better bit error performance while having high spectrum utilization.
对初始条件的敏感依赖性,是非线性系统的特性,也是混沌的起源[1]。自从具有非周期特性并且易于生成的混沌信号被应用于数字通信以来,混沌调制方案已经引起了广泛的研究兴趣,在数字通信领域,混沌信号具有很大的应用优势[2-5]。目前在数字通信中,混沌主要有利用混沌系统的复杂性对数字信息加解密、在扩频和解扩环节中充当扩频码以及在数字调制解调环节充当载波[6-8]这3个方面的应用。
因为混沌同步相干检测性能很差,在基于混沌的解调方面表现不佳,具有相干接收的通信系统所需要的同步技术在嘈杂的环境中难以实现,因此,采用非相干接收的通信系统在实际环境中更具可行性和吸引力[9]。作为非相干接收的典型,差分混沌移位键控(Differential Chaos Shift Keying, DCSK)系统有一半的比特持续时间来传输参考信号,所以数据传输速率和能量效率较低[10],相关延迟移位键控(Correlation Delay Shift Keying, CDSK)系统虽然相比于DCSK系统传输速率有所提高,但是由于其参考信号和信息信号加和在一起传输导致误码率有所上升[11]。为了解决这些问题,文献[12]提出了降噪DCSK(Noise Reduction DCSK, NR-DCSK)通信系统,该系统将复制后的混沌序列作为参考信号和信息承载信号,接收到的信号经过平均后与其延时的信号进行非相干解调,通过对信号的平均提高了系统误码性能;文献[13]提出了一种基于频分复用的高效DCSK(a High Efficient DCSK based on Frequency Division Multiplexing, FDM-HEDCSK)通信系统,该系统将两个混沌信号的线性组合用作参考信号,并在其上调制4bit数据,每个分支通过FDM的方式发送信号,这使比特速率加倍并提高了数据安全性。文献[14]提出了多用户正交DCSK(Multi-User Orthogonal DCSK, OMU-DCSK)通信系统,发射端的正交混沌信号发生器产生的两路正交混沌信号之和用作参考信号,通过延时来区分不同的信息时隙,每个时隙传输经Walsh码调制的
为了进一步提高信息传输速率以及改善多用户系统误码性能,在其他学者的研究基础上,本文提出一种基于正交调制的新型降噪DCSK(QM-NRDCSK)系统。发射端产生两路长度为
QM-NRDCSK系统发送第
yi+1,k=1−2yi,k2, yi,k∈(−1,1)xi,k=sgn(yi,k), xi,k∈(−1,1)} |
(1) |
其中,
sIk(t)={β∑i=1x′i,khT(t−iTC),0<t≤βTCN∑j=1(P+1)β/P∑i=βb2(k−1)N+jxi−[β+(j−1)βP],k⋅hT(t−iTC),βTC<t≤(β+NβP)TC |
(2) |
在正交支路上发送后
sQk(t)={β∑i=1x′i,khT(t−iTC),0<t≤βTCN∑j=1(P+1)β/P∑i=β+1b(2k−1)N+jxi−[β+(j−1)βP],k⋅hT(t−iTC),βTC<t≤(β+NβP)TC |
(3) |
其中,
(i+1)TC∫iTCh2T(t−iTC)dt=1,i=1,2,3,··· |
(4) |
最后将这两路信号分别调制到正交和同相的正弦载波
sk(t)=sIk(t)cos(2πf0t)−sQk(t)sin(2πf0t),0<t≤(β+NβP)TC |
(5) |
其中,
由式(5),可以计算出系统的平均比特能量
Eb=E[(β+NβP)TC∫t=1s2k(t)]2N=(P+N)βPNE[x2i,k] |
(6) |
QM-NRDCSK系统解调第
Z2(k−1)N+u=β/P∑i=1rI′i−uβ/P,krIi,k |
(7) |
解调正交支路第
Z(2k−1)N+u=β/P∑i=1rQ′i−uβ/P,krQi,k |
(8) |
根据式(6)的判决规则,可以恢复出信息信号
b2(k−1)N+u={−1Z2(k−1)N+u<0+1Z2(k−1)N+u≥0,b(2k−1)N+u={−1Z(2k−1)N+u<0+1Z(2k−1)N+u≥0} |
(9) |
信号在无线信道传输过程中会受到噪声、衰落以及时延的影响,因此分析信号在Rayleigh衰落信道下的误码性能更具有现实意义。如图3,以多径Rayleigh衰落信道模型为例,
则接收到的信号
r(t)=L∑l=1αjs(t−τj)+n(t) |
(10) |
由于解调同相支路和正交支路的分析方法相同,以同相支路为例,接收端相关器的输出
Z2(k−1)N+u=β/P∑i=1[(L∑l=1αjxi−uβ/P−τl,k+1PP∑P=1ni−uβ/P,k)⋅(L∑l=1αjbuxi−uβ/P−τl,k+ni−uβ/P,k)]=A+B+C |
(11) |
A=β/P∑i=1L∑l=1α2lbux2i−uβ/P−τl,k |
(12) |
B=β/P∑i=1(L∑l=1αlxi−uβ/P−τl,kni−uβ/P,k+L∑l=1αlbuxi−uβ/P−τl,k1PP∑P=1ni−uβ/P,k) |
(13) |
C=β/P∑i=1(ni−uβ/P,k1PP∑P=1ni−uβ/P,k) |
(14) |
其中,
β/P∑i=1(xi−uβ/P−τm,kxi−uβ/P−τn,k)≈0,m≠n |
(15) |
因此,式(11)的均值可以表示为
E[Z2(k−1)N+u]=βPL∑l=1α2lE[x2i,k]=L∑l=1α2lNEb(P+N) |
(16) |
方差可以表示为
Var[Z2(k−1)N+u]=βPL∑l=1α2lE[x2i,k]N02+βPL∑l=1α2lE[x2i,k]1P⋅N02+1P⋅N204=L∑l=1α2l(P+1)NEbN02P(P+N)+βN204P2 |
(17) |
由于系统平均比特误码率公式可以表示为
BERQM−NRDCSK=12erfc(|E[Z2(k−1)N+u]|√2Var[Z2(k−1)N+u])=12erfc(|E[Z(2k−1)N+u]|√2Var[Z(2k−1)N+u]) |
(18) |
其中,
根据式(16)—式(18),可以计算出解调QM-NRDCSK系统第
BERQM−NRDCSK=12erfc{[(P+1)(P+N)L∑l=1α2lPN(EbN0)−1+β(P+N)2(L∑l=1α2l)22P2N2(EbN0)−2]−12} |
(19) |
令
BER(γb)=12erfc((P+1)(P+N)PNγb−1+β(P+N)22P2N2(γb)−2)−12 |
(20) |
根据文献[19],对
f(γb)=γL−1b(L−1)!ˉγLcexp(−γbˉγc) |
(21) |
其中,
当每条路径的平均信道增益不相等时,
f(γb)=L∑l=1ρlˉγlexp(γbˉγl) |
(22) |
其中,
ρl=l∏v=1,v≠lˉγlˉγl−ˉγv |
(23) |
根据式(21)和式(22), QM-NRDCSK系统误码率可以表示为
BER=∫∞0BER(γb)f(γb)dγb |
(24) |
当
BER[Z2(k−1)N+u]=BER[Z2(k−1)N+u]=12erfc([(P+1)(P+N)PN(EbN0)−1+β(P+N)22P2N2(EbN0)−2]−12) |
(25) |
频谱效率(Spectral Efficiency, SE)可以用比特传输速率与占据的带宽之比来评估,由图4的系统帧结构可知,NR-DCSK系统传输
SENR−DCSK=2N/TNR−DCSK1/TC=12β |
(26) |
SEQM−NRDCSK=2N/TQM−NRDCSK1/TC=2N(β+βN/P) |
(27) |
根据式(26)和式(27)可知,当
能量效率(Energy Efficiency, EE)可以用数据承载能量与总传输比特能量之比来评估,则NR-DCSK与QM-NRDCSK系统的能量效率可以分别表示为
EENR−DCSK=12 |
(28) |
EEQM−NRDCSK=NN+1 |
(29) |
由于NR-DCSK系统每比特持续时间只传输1 bit信息,并且有一半的时间传输不包含信息的参考信号,导致其能量效率不高。由式(29)可知,在
本节先讨论在AWGN信道下,用户数
图5给出了QM-NRDCSK系统在
图6表示当
图7表示在
为了进一步探究复制次数
图9表示当
图10表示在多径Rayleigh衰落信道中,
图11和图12主要分析了QM-NRDCSK系统在两径Rayleigh衰落信道中的BER性能,其中情况1:
图11表示复制次数
图12表示当
本文提出了一种基于正交调制的新型降噪差分混沌键控系统,该QM-NRDCSK系统在发射端产生两路长度为
KADDOUM G, TRAN H V, KONG Long, et al. Design of simultaneous wireless information and power transfer scheme for short reference DCSK communication systems[J]. IEEE Transactions on Communications, 2017, 65(1): 431–443. doi: 10.1109/TCOMM.2016.2619707
|
张琳, 徐位凯, 王琳, 等. 码复用差分混沌键控性能分析与同步算法[J]. 重庆邮电大学学报: 自然科学版, 2016, 28(3): 330–336. doi: 10.3979/j.issn.1673-825X.2016.03.008
ZHANG Lin, XU Weikai, WANG Lin, et al. Performance analysis and synchronization algorithm for CS-DCSK system[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2016, 28(3): 330–336. doi: 10.3979/j.issn.1673-825X.2016.03.008
|
HU Wei, WANG Lin, and KADDOUM G. Design and performance analysis of a differentially spatial modulated chaos shift keying modulation system[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017, 64(11): 1302–1306. doi: 10.1109/TCSII.2017.2697456
|
KADDOUM G, SOUJERI E, ARCILA C, et al. I-DCSK: An improved noncoherent communication system architecture[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2015, 62(9): 901–905. doi: 10.1109/TCSII.2015.2435831
|
LIU Lidong, LI Yi, ZHANG Zhaolun, et al. High-efficiency and noise-robust DCSK approach based on an analytically solvable chaotic oscillator[J]. Electronics Letters, 2018, 54(24): 1384–1385. doi: 10.1049/el.2018.6054
|
YANG Hua and JIANG Guoping. Reference-modulated DCSK: A novel chaotic communication scheme[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2013, 60(4): 232–236. doi: 10.1109/TCSII.2013.2251949
|
FANG Yi, XU Jing, WANG Lin, et al. Performance of MIMO relay DCSK-CD systems over Nakagami fading channels[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60(3): 757–767. doi: 10.1109/TCSI.2012.2215755
|
LEE T F. Enhancing the security of password authenticated key agreement protocols based on chaotic maps[J]. Information Sciences, 2015, 290: 63–71. doi: 10.1016/j.ins.2014.08.041
|
FANG Yi, HAN Guojun, CHEN Pingping, et al. A survey on DCSK-based communication systems and their application to UWB scenarios[J]. IEEE Communications Surveys & Tutorials, 2016, 18(3): 1804–1837. doi: 10.1109/COMST.2016.2547458
|
张刚, 许嘉平, 张天骐. 基于希尔伯特变换的多用户DCSK通信系统性能分析[J]. 电子与信息学报, 2018, 40(11): 2744–2751. doi: 10.11999/JEIT180110
ZHANG Gang, XU Jiaping, and ZHANG Tianqi. Performance analyze for multiuser-DCSK communication system based on Hilbert transform[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2744–2751. doi: 10.11999/JEIT180110
|
DUAN Junyi and YANG Hua. Phase-orthogonality CDSK: A reliable and effective chaotic communication scheme[J]. IET Communications, 2018, 12(9): 1116–1122. doi: 10.1049/iet-com.2017.1239
|
KADDOUM G and SOUJERI E. NR-DCSK: A noise reduction differential chaos shift keying system[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2016, 63(7): 648–652. doi: 10.1109/TCSII.2016.2532041
|
WANG Shaonan, LIU Yingjie, and MA Weijiao. Design of a novel frequency division scheme for DCSK chaos communication system[C]. The 3rd International Conference on Information Management (ICIM), Chengdu, China, 2017: 317–321. doi: 10.1109/INFOMAN.2017.7950400.
|
张刚, 陈和祥, 张天骐. 多用户正交差分混沌键控通信系统[J]. 系统工程与电子技术, 2019, 41(3): 667–673. doi: 10.3969/j.issn.1001-506X.2019.03.28
ZHANG Gang, CHEN Hexiang, and ZHANG Tianqi. Multiuser orthogonal differential chaos shift keying communication system[J]. Systems Engineering and Electronics, 2019, 41(3): 667–673. doi: 10.3969/j.issn.1001-506X.2019.03.28
|
CAI Guofa, FANG Yi, WEN Jinming, et al. Multi-carrier M-ary DCSK system with code index modulation: An efficient solution for chaotic communications[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(6): 1375–1386. doi: 10.1109/JSTSP.2019.2913944
|
QUYEN N X. Bit-error-rate evaluation of high-efficiency differential-chaos-shift-keying system over wireless channels[J]. Journal of Circuits, Systems and Computers, 2018, 27(1): 1850008. doi: 10.1142/S0218126618500081
|
YANG Hua, JIANG Guoping, and DUAN Junyi. Phase-separated DCSK: A simple delay-component-free solution for chaotic communications[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2014, 61(12): 967–971. doi: 10.1109/TCSII.2014.2356914
|
QUYEN N X. On the study of a quadrature DCSK modulation scheme for cognitive radio[J]. International Journal of Bifurcation and Chaos, 2017, 27(9): 1750135. doi: 10.1142/S0218127417501358
|
YANG H, TANG W K S, CHEN Gangrong, et al. System design and performance analysis of orthogonal multi-level differential chaos shift keying modulation scheme[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63(1): 146–156. doi: 10.1109/TCSI.2015.2510622
|
XU Weikai, WANG Lin, and CHEN Guanrong. Performance analysis of the CS-DCSK/BPSK communication system[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61(9): 2624–2633. doi: 10.1109/TCSI.2014.2312477
|