Citation: | Gang ZHANG, Jinhui LIU, Tianqi ZHANG. A Novel Noise Reduction Differential Chaos Shift Keying System Based on Quadrature Modulation[J]. Journal of Electronics & Information Technology, 2021, 43(2): 445-453. doi: 10.11999/JEIT190955 |
To overcome the shortcomings of low transmission rate of Noise Reduction Differential Chaos Shift Keying (NR-DCSK), a novel Noise Reduction Differential Chaos Shift Keying system based on Quadrature Modulation (QM-NRDCSK) is proposed. The generator generates two chaotic sequences, the reference signal of each channel is P-time repetition of the information-bearing signal. The information of different users is distinguished by different time slots, and the two signals are transmitted on the same frequency band by using quadrature modulation. The reference signal of each channel is averaged P times by the moving average filter at the receiving end, and then non-coherently demodulated with the information signal. The correctness of the theoretical derivation is verified by simulations in AWGN and multi-path Rayleigh fading channels, and it shows that the system can effectively improve the transmission rate and has better bit error performance while having high spectrum utilization.
KADDOUM G, TRAN H V, KONG Long, et al. Design of simultaneous wireless information and power transfer scheme for short reference DCSK communication systems[J]. IEEE Transactions on Communications, 2017, 65(1): 431–443. doi: 10.1109/TCOMM.2016.2619707
|
张琳, 徐位凯, 王琳, 等. 码复用差分混沌键控性能分析与同步算法[J]. 重庆邮电大学学报: 自然科学版, 2016, 28(3): 330–336. doi: 10.3979/j.issn.1673-825X.2016.03.008
ZHANG Lin, XU Weikai, WANG Lin, et al. Performance analysis and synchronization algorithm for CS-DCSK system[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2016, 28(3): 330–336. doi: 10.3979/j.issn.1673-825X.2016.03.008
|
HU Wei, WANG Lin, and KADDOUM G. Design and performance analysis of a differentially spatial modulated chaos shift keying modulation system[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017, 64(11): 1302–1306. doi: 10.1109/TCSII.2017.2697456
|
KADDOUM G, SOUJERI E, ARCILA C, et al. I-DCSK: An improved noncoherent communication system architecture[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2015, 62(9): 901–905. doi: 10.1109/TCSII.2015.2435831
|
LIU Lidong, LI Yi, ZHANG Zhaolun, et al. High-efficiency and noise-robust DCSK approach based on an analytically solvable chaotic oscillator[J]. Electronics Letters, 2018, 54(24): 1384–1385. doi: 10.1049/el.2018.6054
|
YANG Hua and JIANG Guoping. Reference-modulated DCSK: A novel chaotic communication scheme[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2013, 60(4): 232–236. doi: 10.1109/TCSII.2013.2251949
|
FANG Yi, XU Jing, WANG Lin, et al. Performance of MIMO relay DCSK-CD systems over Nakagami fading channels[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60(3): 757–767. doi: 10.1109/TCSI.2012.2215755
|
LEE T F. Enhancing the security of password authenticated key agreement protocols based on chaotic maps[J]. Information Sciences, 2015, 290: 63–71. doi: 10.1016/j.ins.2014.08.041
|
FANG Yi, HAN Guojun, CHEN Pingping, et al. A survey on DCSK-based communication systems and their application to UWB scenarios[J]. IEEE Communications Surveys & Tutorials, 2016, 18(3): 1804–1837. doi: 10.1109/COMST.2016.2547458
|
张刚, 许嘉平, 张天骐. 基于希尔伯特变换的多用户DCSK通信系统性能分析[J]. 电子与信息学报, 2018, 40(11): 2744–2751. doi: 10.11999/JEIT180110
ZHANG Gang, XU Jiaping, and ZHANG Tianqi. Performance analyze for multiuser-DCSK communication system based on Hilbert transform[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2744–2751. doi: 10.11999/JEIT180110
|
DUAN Junyi and YANG Hua. Phase-orthogonality CDSK: A reliable and effective chaotic communication scheme[J]. IET Communications, 2018, 12(9): 1116–1122. doi: 10.1049/iet-com.2017.1239
|
KADDOUM G and SOUJERI E. NR-DCSK: A noise reduction differential chaos shift keying system[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2016, 63(7): 648–652. doi: 10.1109/TCSII.2016.2532041
|
WANG Shaonan, LIU Yingjie, and MA Weijiao. Design of a novel frequency division scheme for DCSK chaos communication system[C]. The 3rd International Conference on Information Management (ICIM), Chengdu, China, 2017: 317–321. doi: 10.1109/INFOMAN.2017.7950400.
|
张刚, 陈和祥, 张天骐. 多用户正交差分混沌键控通信系统[J]. 系统工程与电子技术, 2019, 41(3): 667–673. doi: 10.3969/j.issn.1001-506X.2019.03.28
ZHANG Gang, CHEN Hexiang, and ZHANG Tianqi. Multiuser orthogonal differential chaos shift keying communication system[J]. Systems Engineering and Electronics, 2019, 41(3): 667–673. doi: 10.3969/j.issn.1001-506X.2019.03.28
|
CAI Guofa, FANG Yi, WEN Jinming, et al. Multi-carrier M-ary DCSK system with code index modulation: An efficient solution for chaotic communications[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(6): 1375–1386. doi: 10.1109/JSTSP.2019.2913944
|
QUYEN N X. Bit-error-rate evaluation of high-efficiency differential-chaos-shift-keying system over wireless channels[J]. Journal of Circuits, Systems and Computers, 2018, 27(1): 1850008. doi: 10.1142/S0218126618500081
|
YANG Hua, JIANG Guoping, and DUAN Junyi. Phase-separated DCSK: A simple delay-component-free solution for chaotic communications[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2014, 61(12): 967–971. doi: 10.1109/TCSII.2014.2356914
|
QUYEN N X. On the study of a quadrature DCSK modulation scheme for cognitive radio[J]. International Journal of Bifurcation and Chaos, 2017, 27(9): 1750135. doi: 10.1142/S0218127417501358
|
YANG H, TANG W K S, CHEN Gangrong, et al. System design and performance analysis of orthogonal multi-level differential chaos shift keying modulation scheme[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63(1): 146–156. doi: 10.1109/TCSI.2015.2510622
|
XU Weikai, WANG Lin, and CHEN Guanrong. Performance analysis of the CS-DCSK/BPSK communication system[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61(9): 2624–2633. doi: 10.1109/TCSI.2014.2312477
|