Citation: | Dong HAN, Liangjiang ZHOU, Zekun JIAO, Yirong WU. A Coherent 3-D Imaging Method for Multi-circular SAR Based on an Improved 3-D Back Projection Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(1): 131-137. doi: 10.11999/JEIT190945 |
Circular SAR (CSAR) has the ability of 3-D imaging due to its special curve trajectory. Single-pass CSAR can theoretically obtain the resolution of the sub-wavelength level on the distance-azimuth plane, but its resolution at the elevation direction is very low. At the same time, CSAR 3-D imaging with Back Projection(BP) has high algorithm complexity and low imaging efficiency. A coherent 3-D imaging method for multi-circular SAR based on an improved 3-D back projection algorithm is proposed. For the problem of high time complexity of the imaging algorithm, an improved 3-D BP algorithm for CSAR based on constructing geometric interpolation kernel is proposed. 3-D interpolation operations are transformed into 1-D interpolation operations and distance vector searching operations. The final imaging result is obtained by coherently accumulating the improved 3-D BP results of multi-circular SAR. The proposed method solves effectively the problem of low elevation resolution of single-pass CSAR, improves 3-D imaging details, and reduces greatly the time of CSAR 3-D imaging simultaneously. The simulated 3-D imaging results of the conical target and GOTCHA data set from the US Air Force Laboratory verify the effectiveness of the proposed method.
王伟, 胡子英, 龚琳舒. MIMO雷达三维成像自适应Off-grid校正方法[J]. 电子与信息学报, 2019, 41(6): 1294–1301. doi: 10.11999/JEIT180145
WANG Wei, HU Ziying, and GONG Linshu. Adaptive off-grid calibration method for MIMO radar 3D imaging[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1294–1301. doi: 10.11999/JEIT180145
|
田鹤, 于海锋, 朱宇, 等. 基于频域稀疏压缩感知的星载SAR稀疏重航过3维成像[J]. 电子与信息学报, 2020, 42(8): 2021–2028. doi: 10.11999/JEJT190638
TIAN He, YU Haifeng, ZHU Yu, et al. Sparse flight 3-D imaging of spaceborne SAR based on frequency domain sparse compressed sensing[J]. Journal of Electronics &Information Technology, 2020, 42(8): 2021–2028. doi: 10.11999/JEJT190638
|
洪文. 圆迹SAR成像技术研究进展[J]. 雷达学报, 2012, 1(2): 124–135. doi: 10.3724/SP.J.1300.2012.20046
HONG Wen. Progress in circular SAR imaging technique[J]. Journal of Radars, 2012, 1(2): 124–135. doi: 10.3724/SP.J.1300.2012.20046
|
洪文, 王彦平, 林赟, 等. 新体制SAR三维成像技术研究进展[J]. 雷达学报, 2018, 7(6): 633–654. doi: 10.12000/JR18109
HONG Wen, WANG Yanping, LIN Yun, et al. Research progress on three-dimensional SAR imaging techniques[J]. Journal of Radars, 2018, 7(6): 633–654. doi: 10.12000/JR18109
|
AHMED I. Study of the local backprojection algorithm for image formation in ultra wideband synthetic aperture radar[D]. [Master dissertation], Sweden: Blekinge Institute of Technology, 2008: 45–52.
|
杨泽民, 孙光才, 吴玉峰, 等. 一种新的基于极坐标格式的快速后向投影算法[J]. 电子与信息学报, 2014, 36(3): 537–544. doi: 10.3724/SP.J.1146.2013.00613
YANG Zemin, SUN Guangcai, WU Yufeng, et al. A new fast back projection algorithm based on polar format algorithm[J]. Journal of Electronics &Information Technology, 2014, 36(3): 537–544. doi: 10.3724/SP.J.1146.2013.00613
|
ULANDER L M H, HELLSTEN H, and STENSTROM G. Synthetic-aperture radar processing using fast factorized back-projection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 760–776. doi: 10.1109/TAES.2003.1238734
|
ISHIMARU A, CHAN T K, and KUGA Y. An imaging technique using confocal circular synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5): 1524–1530. doi: 10.1109/36.718856
|
林赟. 圆迹合成孔径雷达成像算法研究[D]. [博士论文], 中国科学院大学, 2011: 15–29.
LIN Yun. Study on algorithms for circular synthetic aperture radar imaging[D]. [Ph.D.dissertation], University of Chinese Academy of Sciences, 2011: 15–29.
|
鲍慊. 三维合成孔径雷达稀疏成像方法研究[D]. [博士论文], 中国科学院大学, 2017: 49–61.
BAO Qian. Study on sparse imaging algorithms for three-dimensional synthetic aperture radar[D]. [Ph. D. dissertation], University of Chinese Academy of Sciences, 2017: 49–61.
|
PONCE O, PRATS P, SCHEIBER R, et al. Study of the 3-D impulse response function of holographic SAR tomography with multicircular acquisitions[C]. The 10th European Conference on Synthetic Aperture Radar (EUSAR), Berlin, Germany, 2014: 1433–1436.
|
PONCE O, PRATS-IRAOLA P, PINHEIRO M, et al. Fully polarimetric high-resolution 3-D imaging with circular SAR at L-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3074–3090. doi: 10.1109/TGRS.2013.2269194
|
阚学超, 李银伟, 王海涛, 等. 一种新的圆迹SAR快速后向投影算法[J]. 制导与引信, 2018, 39(4): 10–14, 53.
KAN Xuechao, LI Yinwei, WANG Haitao, et al. A new algorithm of fast back projection in circular SAR[J]. Guidance &Fuze, 2018, 39(4): 10–14, 53.
|
VOCCOLA K, YAZICI B, FERRARA M, et al. On the relationship between the generalized likelihood ratio test and backprojection for synthetic aperture radar imaging[C]. SPIE 7335, Automatic Target Recognition XIX, Orlando, USA, 2009: 1–10. doi: 10.1117/12.818554.
|
CHEN Leping, AN Daoxiang, HUANG Xiaotao, et al. A 3D reconstruction strategy of vehicle outline based on single-pass single-polarization CSAR data[J]. IEEE Transactions on Image Processing, 2017, 26(11): 5545–5554. doi: 10.1109/TIP.2017.2738566
|