Citation: | Hai LI, Di SONG, Weijie CHENG, Jie WANG. Echo Power Screening and Digital Land Classification Data-assisted Wind Speed Estimation of Low-altitude Wind-shear[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2286-2291. doi: 10.11999/JEIT190894 |
[1] |
李海, 李怡静, 吴仁彪. 载机偏航下基于广义相邻多波束自适应处理的低空风切变风速估计[J]. 电子与信息学报, 2019, 41(7): 1728–1734. doi: 10.11999/JEIT180758
LI Hai, LI Yijing, and WU Renbiao. Generalized adjacent multi-beam adaptive processing based low-altitude wind-shear wind speed estimation under aircraft yawing[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1728–1734. doi: 10.11999/JEIT180758
|
[2] |
WILSON J W and WAKIMOTO R M. The discovery of the downburst: T. T. Fujita's contribution[J]. Bulletin of the American Meteorological Society, 2001, 82(1): 49–62. doi: 10.1175/1520-0477(2001)082<0049:TDOTDT>2.3.CO;2
|
[3] |
RTCA/DO-220 Minimum operational performance standards for airborne weather radar with forward-looking wind shear capability[S]. Washington DC: RTCA Inc, 2016.
|
[4] |
李海, 王杰. 基于CMCAP的低空风切变风速估计方法[J]. 系统工程与电子技术, 2019, 41(3): 529–533. doi: 10.3969/j.issn.1001-506X.2019.03.10
LI Hai and WANG Jie. Low-altitude wind-shear wind speed estimation based on CMCAP[J]. Systems Engineering and Electronics, 2019, 41(3): 529–533. doi: 10.3969/j.issn.1001-506X.2019.03.10
|
[5] |
LOEW E, SALAZAR J, TSAI P, et al. Architecture overview and system performance of the airborne phased array radar (APAR) for atmospheric research[R]. Report of National Center for Atmospheric Research, 2013.
|
[6] |
KLEMM R. Principles of Space-Time Adaptive Processing[M]. London: Institution of Electrical Engineers, 2002: 1–32.
|
[7] |
王永良, 彭应宁. 空时自适应信号处理[M]. 北京: 清华大学出版社, 2000: 26–87.
WANG Yongliang and PENG Yingning. Space Time Adaptive Processing[M]. Beijing: Tsinghua University Press, 2000: 26–87.
|
[8] |
WARD J. Space-time adaptive processing for airborne radar data systems[R]. Lexington, Massachusetts: Lincoln Laboratory of MIT, 1994: 25–45.
|
[9] |
王齐珍. 非均匀环境下的机载相控阵雷达STAP算法研究[D]. [硕士论文], 南京航空航天大学, 2009.
WANG Qizhen. Study on STAP algorithm of airborne phased array radar in nonhomogeneous environments[D]. [Master dissertation], Nanjing University of Aeronautics and Astronautics, 2009.
|
[10] |
RABIDEAU D J and STEINHARDT A O. Improved adaptive clutter cancellation through data-adaptive training[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3): 879–891. doi: 10.1109/7.784058
|
[11] |
WANG Yongliang, CHEN Jianwen, BAO Zheng, et al. Robust space-time adaptive processing for airborne radar in nonhomogeneous clutter environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(1): 70–81. doi: 10.1109/taes.2003.1188894
|
[12] |
ZHANG Bowen, DAI Zhiguang, and XIE Lan. Secondary non-homogeneity detector for STAP[C]. The 3rd IEEE International Conference on Signal and Image Processing, Shenzhen, China, 2018: 382–384.
|
[13] |
侯静, 胡孟凯, 王子微. 一种改进的知识辅助MIMO雷达空时自适应处理方法[J]. 电子与信息学报, 2019, 41(4): 795–800. doi: 10.11999/JEIT180557
HOU Jing, HU Mengkai, and WANG Ziwei. An improved knowledge-aided space-time adaptive signal processing algorithm for MIMO radar[J]. Journal of Electronics &Information Technology, 2019, 41(4): 795–800. doi: 10.11999/JEIT180557
|
[14] |
LI Hai, WANG Jie, FAN Yi, et al. High-fidelity inhomogeneous ground clutter simulation of airborne phased array PD radar aided by digital elevation model and digital land classification data[J]. Sensors, 2018, 18(9): 2925. doi: 10.3390/s18092925
|
[15] |
BRINGI V N and CHANDRASEKAR V. Polarimetric Doppler Weather Radar: Principles and Applications[M]. Cambridge: Cambridge University Press, 2005: 1–100.
|
[16] |
CAPRARO C T, CAPRARO G T, BRADARIC I, et al. Implementing digital terrain data in knowledge-aided space-time adaptive processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 1080–1099. doi: 10.1109/taes.2006.248199
|