Advanced Search
Volume 43 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
Hai LI, Di SONG, Weijie CHENG, Jie WANG. Echo Power Screening and Digital Land Classification Data-assisted Wind Speed Estimation of Low-altitude Wind-shear[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2286-2291. doi: 10.11999/JEIT190894
Citation: Hai LI, Di SONG, Weijie CHENG, Jie WANG. Echo Power Screening and Digital Land Classification Data-assisted Wind Speed Estimation of Low-altitude Wind-shear[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2286-2291. doi: 10.11999/JEIT190894

Echo Power Screening and Digital Land Classification Data-assisted Wind Speed Estimation of Low-altitude Wind-shear

doi: 10.11999/JEIT190894
Funds:  The Civil Aircraft Project (MJ-2018-S-28), The Key Project of Tianjin Natural Fund (20JCZDJC00490), The Aviation Foundation of China (20182067008), The Basic Scientific Research Project of Universities of The CPC Central Committee (3122018D008), The Training Funds for Famous Blue Sky Teachers of Civil Aviation University of China
  • Received Date: 2019-11-07
  • Rev Recd Date: 2021-06-15
  • Available Online: 2021-06-25
  • Publish Date: 2021-08-10
  • In order to solve the problem of inaccurate estimation of low-altitude wind-shear wind speed under non-uniform clutter environment, a kind of low-altitude wind-shear wind speed estimation method based on echo power screening and Digital Land Classification Data (DLCD)-assisted is proposed. The method firstly uses the sample echo power to select initially the training samples, then uses the DLCD to calculate the similarity between the samples, and selects the training samples with higher sample similarity from the higher-powered training samples to estimate the clutter covariance matrix, finally uses the Generalized adjacent Multiple-Beam (GMB)-Joint Domain Localized (JDL) method to achieve wind speed effective estimation of low-altitude wind-shear.
  • loading
  • [1]
    李海, 李怡静, 吴仁彪. 载机偏航下基于广义相邻多波束自适应处理的低空风切变风速估计[J]. 电子与信息学报, 2019, 41(7): 1728–1734. doi: 10.11999/JEIT180758

    LI Hai, LI Yijing, and WU Renbiao. Generalized adjacent multi-beam adaptive processing based low-altitude wind-shear wind speed estimation under aircraft yawing[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1728–1734. doi: 10.11999/JEIT180758
    [2]
    WILSON J W and WAKIMOTO R M. The discovery of the downburst: T. T. Fujita's contribution[J]. Bulletin of the American Meteorological Society, 2001, 82(1): 49–62. doi: 10.1175/1520-0477(2001)082<0049:TDOTDT>2.3.CO;2
    [3]
    RTCA/DO-220 Minimum operational performance standards for airborne weather radar with forward-looking wind shear capability[S]. Washington DC: RTCA Inc, 2016.
    [4]
    李海, 王杰. 基于CMCAP的低空风切变风速估计方法[J]. 系统工程与电子技术, 2019, 41(3): 529–533. doi: 10.3969/j.issn.1001-506X.2019.03.10

    LI Hai and WANG Jie. Low-altitude wind-shear wind speed estimation based on CMCAP[J]. Systems Engineering and Electronics, 2019, 41(3): 529–533. doi: 10.3969/j.issn.1001-506X.2019.03.10
    [5]
    LOEW E, SALAZAR J, TSAI P, et al. Architecture overview and system performance of the airborne phased array radar (APAR) for atmospheric research[R]. Report of National Center for Atmospheric Research, 2013.
    [6]
    KLEMM R. Principles of Space-Time Adaptive Processing[M]. London: Institution of Electrical Engineers, 2002: 1–32.
    [7]
    王永良, 彭应宁. 空时自适应信号处理[M]. 北京: 清华大学出版社, 2000: 26–87.

    WANG Yongliang and PENG Yingning. Space Time Adaptive Processing[M]. Beijing: Tsinghua University Press, 2000: 26–87.
    [8]
    WARD J. Space-time adaptive processing for airborne radar data systems[R]. Lexington, Massachusetts: Lincoln Laboratory of MIT, 1994: 25–45.
    [9]
    王齐珍. 非均匀环境下的机载相控阵雷达STAP算法研究[D]. [硕士论文], 南京航空航天大学, 2009.

    WANG Qizhen. Study on STAP algorithm of airborne phased array radar in nonhomogeneous environments[D]. [Master dissertation], Nanjing University of Aeronautics and Astronautics, 2009.
    [10]
    RABIDEAU D J and STEINHARDT A O. Improved adaptive clutter cancellation through data-adaptive training[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3): 879–891. doi: 10.1109/7.784058
    [11]
    WANG Yongliang, CHEN Jianwen, BAO Zheng, et al. Robust space-time adaptive processing for airborne radar in nonhomogeneous clutter environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(1): 70–81. doi: 10.1109/taes.2003.1188894
    [12]
    ZHANG Bowen, DAI Zhiguang, and XIE Lan. Secondary non-homogeneity detector for STAP[C]. The 3rd IEEE International Conference on Signal and Image Processing, Shenzhen, China, 2018: 382–384.
    [13]
    侯静, 胡孟凯, 王子微. 一种改进的知识辅助MIMO雷达空时自适应处理方法[J]. 电子与信息学报, 2019, 41(4): 795–800. doi: 10.11999/JEIT180557

    HOU Jing, HU Mengkai, and WANG Ziwei. An improved knowledge-aided space-time adaptive signal processing algorithm for MIMO radar[J]. Journal of Electronics &Information Technology, 2019, 41(4): 795–800. doi: 10.11999/JEIT180557
    [14]
    LI Hai, WANG Jie, FAN Yi, et al. High-fidelity inhomogeneous ground clutter simulation of airborne phased array PD radar aided by digital elevation model and digital land classification data[J]. Sensors, 2018, 18(9): 2925. doi: 10.3390/s18092925
    [15]
    BRINGI V N and CHANDRASEKAR V. Polarimetric Doppler Weather Radar: Principles and Applications[M]. Cambridge: Cambridge University Press, 2005: 1–100.
    [16]
    CAPRARO C T, CAPRARO G T, BRADARIC I, et al. Implementing digital terrain data in knowledge-aided space-time adaptive processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 1080–1099. doi: 10.1109/taes.2006.248199
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (619) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return