Advanced Search
Volume 42 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
Yanfeng WANG, Zhenzhen ZHANG, Panru WANG, Junwei SUN. Molecular Circuit Design of Two-bit Gray Code Subtracter Based on DNA Strand Displacement[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2557-2565. doi: 10.11999/JEIT190880
Citation: Yanfeng WANG, Zhenzhen ZHANG, Panru WANG, Junwei SUN. Molecular Circuit Design of Two-bit Gray Code Subtracter Based on DNA Strand Displacement[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2557-2565. doi: 10.11999/JEIT190880

Molecular Circuit Design of Two-bit Gray Code Subtracter Based on DNA Strand Displacement

doi: 10.11999/JEIT190880
Funds:  The National Key R and D Program of China for International S and T Cooperation Projects (2017YFE0103900), The Joint Funds of the National Natural Science Foundation of China (U1804262), The State Key Program of National Natural Science of China (61632002), The Central Plains Thousand Talents Program (204200510003), The Open Fund of State Key Laboratory of Esophageal Cancer Prevention and Treatment (K2020-0010, K2020-0011)
  • Received Date: 2019-11-04
  • Rev Recd Date: 2020-06-07
  • Available Online: 2020-07-11
  • Publish Date: 2020-10-13
  • DNA strand displacement technology has the characteristics of spontaneity, parallelism, programmability and dynamic cascade, which is widely used to solve mathematical problems. In this paper, a two-bit subtracter is designed by using Gray code encoding and DNA strand displacement technology to extend the operation of DNA subtraction. Finally, Visual DSD software is used to simulate the two-bit subtracter. The circuit, with the strong parallelism and expansibility, achieves the expected function. It can be used in combination with other biochemical circuits.
  • loading
  • XU Jin, QIANG Xiaoli, CHENG Kai, et al. A DNA computing model for the graph vertex coloring problem based on a probe graph[J]. Engineering, 2018, 4(1): 61–77. doi: 10.1016/j.eng.2018.02.011
    SONG Tianqi, GARG S, MOKHTAR R, et al. Analog computation by DNA strand displacement circuits[J]. ACS Synthetic Biology, 2016, 5(8): 898–912. doi: 10.1021/acssynbio.6b00144
    THUBAGERE A J, THACHUK C, BERLEANT J, et al. Compiler-aided systematic construction of large-scale DNA strand displacement circuits using unpurified components[J]. Nature Communications, 2017, 8: 14373. doi: 10.1038/ncomms14373
    ZOU Chengye, WEI Xiaopeng, ZHANG Qiang, et al. Solution of equations based on analog DNA strand displacement circuits[J]. IEEE Transactions on Nanobioscience, 2019, 18(2): 191–204. doi: 10.1109/TNB.2019.2897116
    SONG Tianqi, GARG S, MOKHTAR R, et al. Design and analysis of compact DNA strand displacement circuits for analog computation using autocatalytic amplifiers[J]. ACS Synthetic Biology, 2018, 7(1): 46–53. doi: 10.1021/acssynbio.6b00390
    李佩佳, 石勇, 汪华东, 等. 基于有序编码的核极限学习顺序回归模型[J]. 电子与信息学报, 2018, 40(6): 1287–1293. doi: 10.11999/JEIT170765

    LI Peijia, SHI Yong, WANG Huadong, et al. Ordered code-based kernel extreme learning machine for ordinal regression[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1287–1293. doi: 10.11999/JEIT170765
    刘伟, 魏志刚, 杜薇, 等. 近阈值电压下可容错的末级缓存结构设计[J]. 电子与信息学报, 2018, 40(7): 1759–1766. doi: 10.11999/JEIT170989

    LIU Wei, WEI Zhigang, DU Wei, et al. Fault-tolerant last level cache architecture design at near-threshold voltage[J]. Journal of Electronics &Information Technology, 2018, 40(7): 1759–1766. doi: 10.11999/JEIT170989
    KONG Jinglin, ZHU Jinbo, CHEN Kaikai, et al. Specific biosensing using DNA aptamers and nanopores[J]. Advanced Functional Materials, 2019, 29(3): 1807555. doi: 10.1002/adfm.201807555
    CUI Yunxi, FENG Xuenan, WANG Yaxin, et al. An integrated-molecular-beacon based multiple exponential strand displacement amplification strategy for ultrasensitive detection of DNA methyltransferase activity[J]. Chemical Science, 2019, 10(3): 2290–2297. doi: 10.1039/c8sc05102j
    LI Hua, LIU Jin, and GU Hongzhou. Targeting nucleolin to obstruct vasculature feeding with an intelligent DNA nanorobot[J]. Journal of Cellular and Molecular Medicine, 2019, 23(3): 2248–2250. doi: 10.1111/jcmm.14127
    KIELAR C, REDDAVIDE F V, TUBBENHAUER S, et al. Pharmacophore nanoarrays on DNA origami substrates as a single-molecule assay for fragment-based drug discovery[J]. Angewandte Chemie, 2018, 130(45): 15089–15093. doi: 10.1002/ange.201806778
    TASCIOTTI E. Smart cancer therapy with DNA origami[J]. Nature Biotechnology, 2018, 36(3): 234–235. doi: 10.1038/nbt.4095
    CORDEIRO M, OTRELO-CARDOSO A R, SVERGUN D I, et al. Optical and structural characterization of a chronic myeloid leukemia DNA biosensor[J]. ACS Chemical Biology, 2018, 13(5): 1235–1242. doi: 10.1021/acschembio.8b00029
    ELBAZ J, LIOUBASHEVSKI O, WANG Fuan, et al. DNA computing circuits using libraries of DNAzyme subunits[J]. Nature Nanotechnology, 2010, 5(6): 417–422. doi: 10.1038/nnano.2010.88
    QIAN Lulu and WINFREE E. A simple DNA gate motif for synthesizing large-scale circuits[J]. Journal of the Royal Society Interface, 2011, 8(62): 1281–1297. doi: 10.1098/rsif.2010.0729
    QIAN Lulu, WINFREE E, and BRUCK J. Neural network computation with DNA strand displacement cascades[J]. Nature, 2011, 475(7356): 368–372. doi: 10.1038/nature10262
    马丽娜, 董亚非, 张成, 等. 基于DNA链置换与荧光标记的0–1规划问题的计算模型[J]. 数学的实践与认识, 2013, 43(11): 152–159. doi: 10.3969/j.issn.1000-0984.2013.11.020

    MA Lina, DONG Yafei, ZHANG Cheng, et al. A computing model based on DNA strand replacement/fluorescence labeling for 0–1 programming[J]. Mathematics in Practice and Theory, 2013, 43(11): 152–159. doi: 10.3969/j.issn.1000-0984.2013.11.020
    姚莉娜, 田桂花, 叶盟盟, 等. DNA链置换技术的研究现状与展望[J]. 郑州轻工业学院学报: 自然科学版, 2014, 29(1): 15–21. doi: 10.3969/j.issn.2095-476X.2014.01.003

    YAO Lina, TIAN Guihua, YE Mengmeng, et al. Current situation and prospect of DNA strand displacement technology[J]. Journal of Zhengzhou University of Light Industry:Natural Science, 2014, 29(1): 15–21. doi: 10.3969/j.issn.2095-476X.2014.01.003
    ZOU Chengye, WEI Xiaopeng, ZHANG Qiang, et al. Four-analog computation based on DNA strand displacement[J]. ACS Omega, 2017, 2(8): 4143–4160. doi: 10.1021/acsomega.7b00572
    LOPEZ R, WANG Ruofan, and SEELIG G. A molecular multi-gene classifier for disease diagnostics[J]. Nature Chemistry, 2018, 10(7): 746–754. doi: 10.1038/s41557-018-0056-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (1777) PDF downloads(75) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return