Advanced Search
Volume 43 Issue 2
Feb.  2021
Turn off MathJax
Article Contents
Yubo LI, Jingjing ZHANG, Chenghuan HAN, Xiuping PENG. Construction of Convolution Compressed Sensing Measurement Matrices Based on Cyclotomic Classes[J]. Journal of Electronics & Information Technology, 2021, 43(2): 419-425. doi: 10.11999/JEIT190878
Citation: Yubo LI, Jingjing ZHANG, Chenghuan HAN, Xiuping PENG. Construction of Convolution Compressed Sensing Measurement Matrices Based on Cyclotomic Classes[J]. Journal of Electronics & Information Technology, 2021, 43(2): 419-425. doi: 10.11999/JEIT190878

Construction of Convolution Compressed Sensing Measurement Matrices Based on Cyclotomic Classes

doi: 10.11999/JEIT190878
Funds:  The National Natural Science Foundation of China (61671402, 61501395), The Natural Science Foundation of Hebei Province (F2020203043), The Fundation of Top Young Talents Program in Colleges and Universities of Hebei Province (BJ2018018)
  • Received Date: 2019-11-04
  • Rev Recd Date: 2020-07-15
  • Available Online: 2020-12-09
  • Publish Date: 2021-02-23
  • Convolutional compressed sensing emerging in recent years is a new type of compressed sensing technology. By using cyclic matrix as measurement matrices, the sampling in convolutional compressed sensing can be simplified into convolution process, thus the complexity of the algorithm is greatly reduced. In this paper, a construction of measurement matrices for convolutional compressed sensing based on cyclotomic classes is proposed. The measurements are obtained by using the circulate convolution signal of the deterministic sequence and then by random subsampling. The correlation of the measurement matrix constructed in this paper is smaller than that of the existing constructions in the literature. The simulation results show that the measurement matrix constructed in this paper can recover the sparse signal better than the random Gaussian matrix under the same conditions. The proposed matrix can also be applied to channel estimation and reconstruction of two-dimensional images.

  • loading
  • DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    DONOHO D L and ELAD M. Optimally sparse representation in general (nonorthogonal) dictionaries via 1 minimization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(5): 2197–2202. doi: 10.1073/pnas.0437847100
    范剑英, 马明阳, 赵首博. 基于压缩感知高反光成像技术研究[J]. 电子与信息学报, 2020, 42(4): 1013–1020. doi: 10.11999/JEIT190512

    FAN Jianying, MA Mingyang, and ZHAO Shoubo. Research on high reflective imaging technology based on compressed sensing[J]. Journal of Electronics &Information Technology, 2020, 42(4): 1013–1020. doi: 10.11999/JEIT190512
    李玮, 邓维波, 杨强, 等. 基于确定性压缩感知采样策略的阵列失效单元远场诊断方法[J]. 电子与信息学报, 2018, 40(11): 2541–2546. doi: 10.11999/JEIT180175

    LI Wei, DENG Weibo, YANG Qiang, et al. Far-field diagnosis method of array failure cells based on deterministic compressed sensing sampling strategy[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2541–2546. doi: 10.11999/JEIT180175
    LI Yubo, XUAN Hongqian, JIA Dongyan, et al. A construction of sparse deterministic measurement matrices[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2019, E102. A(11): 1575–1579. doi: 10.1587/transfun.e102.a.1575
    NOUASRIA H and ET-TOLBA M. Sensing matrix based on Kasami codes for compressive sensing[J]. IET Signal Processing, 2018, 12(8): 1064–1072. doi: 10.1049/iet-spr.2017.0537
    GU Zhi, ZHOU Zhengchun, YANG Yang, et al. Deterministic compressed sensing matrices from sequences with optimal correlation[J]. IEEE Access, 2019, 7: 16704–16710. doi: 10.1109/ACCESS.2019.2896006
    LIU Haiqiang, YIN Jihang, HUA Gang, et al. Deterministic construction of measurement matrices based on Bose balanced incomplete block designs[J]. IEEE Access, 2018, 6: 21710–21718. doi: 10.1109/ACCESS.2018.2824329
    CUI Xiang. Construction of deterministic measurements matrix using decimated Legendre sequences[J]. MATEC Web of Conferences, 2015, 22: 01047. doi: 10.1051/matecconf/20152201047
    YU N Y and GAN Lu. Convolutional compressed sensing using decimated sidelnikov sequences[J]. IEEE Signal Processing Letters, 2014, 21(5): 591–594. doi: 10.1109/LSP.2014.2311659
    LI Kezhi, GAN Lu, and LING Cong. Convolutional compressed sensing using deterministic sequences[J]. IEEE Transactions on Signal Processing, 2013, 61(3): 740–752. doi: 10.1109/TSP.2012.2229994
    TROPP J A. Random filters for compressive sampling[C]. The 2006 40th Annual Conference on Information Sciences and Systems, Princeton, USA, 2006: 216–217. doi: 10.1109/CISS.2006.286465.
    BAJWA W U, HAUPT J D, RAZ G M, et al. Toeplitz-structured compressed sensing matrices[C]. 2007 IEEE/SP 14th Workshop on Statistical Signal Processing, Madison, USA, 2007: 294–298. doi: 10.1109/SSP.2007.4301266.
    ROMBERG J. Compressive sensing by random convolution[J]. SIAM Journal on Imaging Sciences, 2009, 2(4): 1098–1128. doi: 10.1137/08072975X
    CANDÈS E J, ROMBERG J K, and TAO T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207–1223. doi: 10.1002/cpa.20124
    BOURGAIN J, DILWORTH S J, FORD K, et al. Explicit constructions of RIP matrices and related problems[J]. Duke Mathematical Journal, 2011, 159(1): 145–185. doi: 10.1215/00127094-1384809
    申颖. 基于分圆类和广义分圆类的几乎差集偶构造方法研究[D]. [硕士论文], 燕山大学, 2016: 1–62.

    SHEN Ying. The constructions of almost difference set pairs based on cyclotomy and generalized cyclotomy[D]. [Master dissertation], Yanshan University, 2016: 1–62.
    TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666. doi: 10.1109/TIT.2007.909108
    YANG Junfeng, ZHANG Yin, and YIN Wotao. A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 288–297. doi: 10.1109/JSTSP.2010.2042333
    HALE E T, YIN W, and ZHANG Yin. Fixed-point continuation for 1-minimization: Methodology and convergence[J]. SIAM Journal on Optimization, 2008, 19(3): 1107–1130. doi: 10.1137/070698920
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (1192) PDF downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return