Advanced Search
Volume 43 Issue 2
Feb.  2021
Turn off MathJax
Article Contents
Hongyan ZANG, Xinyuan WEI, Yue YUAN. Determination and Properties Analysis of a Cubic Polynomial Chaotic Map[J]. Journal of Electronics & Information Technology, 2021, 43(2): 454-460. doi: 10.11999/JEIT190875
Citation: Hongyan ZANG, Xinyuan WEI, Yue YUAN. Determination and Properties Analysis of a Cubic Polynomial Chaotic Map[J]. Journal of Electronics & Information Technology, 2021, 43(2): 454-460. doi: 10.11999/JEIT190875

Determination and Properties Analysis of a Cubic Polynomial Chaotic Map

doi: 10.11999/JEIT190875
Funds:  The Fundamental Research Funds for the Central Universities of Ministry of Education of China (06108236)
  • Received Date: 2019-11-04
  • Rev Recd Date: 2020-03-12
  • Available Online: 2020-12-11
  • Publish Date: 2021-02-23
  • This paper provides the sufficient conditions for topological conjugation between the general cubic polynomial maps and a piecewise linear chaotic map, then provides indirectly the sufficient conditions that make the cubic polynomial maps be chaotic. This paper analyzes further the uniformity, structural complexity and randomness of the piecewise linear map and cubic polynomial maps of topological conjugation. The results show that the uniformity of the piecewise linear map is better than the polynomial maps while the randomness of the polynomial maps is superior to the piecewise linear map. As for the structural complexity, there is no significant difference between the two kinds of systems, but it should be noted that the quantitative method makes a significant impact on the structure complexity of the systems.

  • loading
  • LI T Y and YORKE J A. Period three implies chaos[J]. The American Mathematical Monthly, 1975, 82(10): 985–992. doi: 10.2307/2318254
    YANG Xiuping, MIN Lequan, and WANG Xue. A cubic map chaos criterion theorem with applications in generalized synchronization based pseudorandom number generator and image encryption[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2015, 25(5): 053104. doi: 10.1063/1.4917380
    王传福, 丁群. 基于混沌系统的SM4密钥扩展算法[J]. 物理学报, 2017, 66(2): 020504. doi: 10.7498/aps.66.020504

    WANG Chuanfu and DING Qun. SM4 key scheme algorithm based on chaotic system[J]. Acta Physica Sinica, 2017, 66(2): 020504. doi: 10.7498/aps.66.020504
    LIN Zhuosheng, YU Simin, FENG Xiutao, et al. Cryptanalysis of a chaotic stream cipher and its improved scheme[J]. International Journal of Bifurcation and Chaos, 2018, 28(7): 1850086. doi: 10.1142/S0218127418500864
    XU Zhengguang, TIAN Qing, and TIAN Li. Theorem to generate independently and uniformly distributed chaotic key stream via topologically conjugated maps of tent map[J]. Mathematical Problems in Engineering, 2012, 2012: 619257. doi: 10.1155/2012/619257
    DASTGHEIB M A and FARHANG M. A digital pseudo-random number generator based on sawtooth chaotic map with a guaranteed enhanced period[J]. Nonlinear Dynamics, 2017, 89(4): 2957–2966. doi: 10.1007/s11071-017-3638-3
    梁涤青, 陈志刚, 邓小鸿. 基于小波包能量熵的混沌序列复杂度分析[J]. 电子学报, 2015, 43(10): 1971–1977. doi: 10.3969/j.issn.0372-2112.2015.10.014

    LIANG Diqing, CHEN Zhigang, and DENG Xiaohong. Analysis of chaotic sequence complexity based on wavelet packet energy entropy[J]. Acta Electronica Sinica, 2015, 43(10): 1971–1977. doi: 10.3969/j.issn.0372-2112.2015.10.014
    MURILLO-ESCOBAR M A, CRUZ-HERNÁNDEZ C, CARDOZA-AVENDAÑO L, et al. A novel pseudorandom number generator based on pseudorandomly enhanced logistic map[J]. Nonlinear Dynamics, 2017, 87: 407–425. doi: 10.1007/s11071-016-3051-3
    臧鸿雁, 黄慧芳, 柴宏玉. 一类2次多项式混沌系统的均匀化方法研究[J]. 电子与信息学报, 2019, 41(7): 1618–1624. doi: 10.11999/JEIT180735

    ZANG Hongyan, HUANG Huifang, and CHAI Hongyu. Homogenization method for the quadratic polynomial chaotic system[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1618–1624. doi: 10.11999/JEIT180735
    臧鸿雁, 柴宏玉. 一个二次多项式混沌系统的均匀化及其熵分析[J]. 物理学报, 2016, 65(3): 030504. doi: 10.7498/aps.65.030504

    ZANG Hongyan and CHAI Hongyu. Homogenization and entropy analysis of a quadratic polynomial chaotic system[J]. Acta Physica Sinica, 2016, 65(3): 030504. doi: 10.7498/aps.65.030504
    徐正光, 田清, 田立. 一类可以产生独立同分布密钥流的混沌系统[J]. 物理学报, 2013, 62(13): 120501. doi: 10.7498/aps.62.120501

    XU Zhengguang, TIAN Qing, and TIAN Li. A class of topologically conjugated chaotic maps of tent map to generate independently and uniformly distributed chaotic key stream[J]. Acta Physica Sinica, 2013, 62(13): 120501. doi: 10.7498/aps.62.120501
    LIU Lingfeng, MIAO Suoxia, HU Hanping, et al. N-phase logistic chaotic sequence and its application for image encryption[J]. IET Signal Processing, 2016, 10(9): 1096–1104. doi: 10.1049/iet-spr.2015.0522
    TONG Xiaojun, CUI Minggen, and WANG Zhu. A new feedback image encryption scheme based on perturbation with dynamical compound chaotic sequence cipher generator[J]. Optics Communications, 2009, 282(14): 2722–2728. doi: 10.1016/j.optcom.2009.03.075
    TONG Xiaojun, ZHANG Miao, WANG Zhu, et al. A image encryption scheme based on dynamical perturbation and linear feedback shift register[J]. Nonlinear Dynamics, 2014, 78(3): 2277–2291. doi: 10.1007/s11071-014-1564-1
    HAO Bolin. Starting with Parabola: An Introduction to Chaotic Dynamics[M]. 2nd ed. Beijing: Peking University Press, 2013: 114–118.
    孙克辉, 贺少波, 何毅, 等. 混沌伪随机序列的谱熵复杂性分析[J]. 物理学报, 2013, 62(1): 010501. doi: 10.7498/aps.62.010501

    SUN Kehui, HE Shaobo, HE Yi, et al. Complexity analysis of chaotic pseudo-random sequences based on spectral entropy algorithm[J]. Acta Physica Sinica, 2013, 62(1): 010501. doi: 10.7498/aps.62.010501
    RUKHIN A, SOTO J, NECHVATAL J, et al. Special Publication 800-22 A statistical test suite for random and pseudorandom number generators for cryptographic applications[S]. U. S. Department of Commerce: National Institute of Standards and Technology, 2010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (845) PDF downloads(63) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return