Citation: | Hongyan ZANG, Xinyuan WEI, Yue YUAN. Determination and Properties Analysis of a Cubic Polynomial Chaotic Map[J]. Journal of Electronics & Information Technology, 2021, 43(2): 454-460. doi: 10.11999/JEIT190875 |
This paper provides the sufficient conditions for topological conjugation between the general cubic polynomial maps and a piecewise linear chaotic map, then provides indirectly the sufficient conditions that make the cubic polynomial maps be chaotic. This paper analyzes further the uniformity, structural complexity and randomness of the piecewise linear map and cubic polynomial maps of topological conjugation. The results show that the uniformity of the piecewise linear map is better than the polynomial maps while the randomness of the polynomial maps is superior to the piecewise linear map. As for the structural complexity, there is no significant difference between the two kinds of systems, but it should be noted that the quantitative method makes a significant impact on the structure complexity of the systems.
LI T Y and YORKE J A. Period three implies chaos[J]. The American Mathematical Monthly, 1975, 82(10): 985–992. doi: 10.2307/2318254
|
YANG Xiuping, MIN Lequan, and WANG Xue. A cubic map chaos criterion theorem with applications in generalized synchronization based pseudorandom number generator and image encryption[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2015, 25(5): 053104. doi: 10.1063/1.4917380
|
王传福, 丁群. 基于混沌系统的SM4密钥扩展算法[J]. 物理学报, 2017, 66(2): 020504. doi: 10.7498/aps.66.020504
WANG Chuanfu and DING Qun. SM4 key scheme algorithm based on chaotic system[J]. Acta Physica Sinica, 2017, 66(2): 020504. doi: 10.7498/aps.66.020504
|
LIN Zhuosheng, YU Simin, FENG Xiutao, et al. Cryptanalysis of a chaotic stream cipher and its improved scheme[J]. International Journal of Bifurcation and Chaos, 2018, 28(7): 1850086. doi: 10.1142/S0218127418500864
|
XU Zhengguang, TIAN Qing, and TIAN Li. Theorem to generate independently and uniformly distributed chaotic key stream via topologically conjugated maps of tent map[J]. Mathematical Problems in Engineering, 2012, 2012: 619257. doi: 10.1155/2012/619257
|
DASTGHEIB M A and FARHANG M. A digital pseudo-random number generator based on sawtooth chaotic map with a guaranteed enhanced period[J]. Nonlinear Dynamics, 2017, 89(4): 2957–2966. doi: 10.1007/s11071-017-3638-3
|
梁涤青, 陈志刚, 邓小鸿. 基于小波包能量熵的混沌序列复杂度分析[J]. 电子学报, 2015, 43(10): 1971–1977. doi: 10.3969/j.issn.0372-2112.2015.10.014
LIANG Diqing, CHEN Zhigang, and DENG Xiaohong. Analysis of chaotic sequence complexity based on wavelet packet energy entropy[J]. Acta Electronica Sinica, 2015, 43(10): 1971–1977. doi: 10.3969/j.issn.0372-2112.2015.10.014
|
MURILLO-ESCOBAR M A, CRUZ-HERNÁNDEZ C, CARDOZA-AVENDAÑO L, et al. A novel pseudorandom number generator based on pseudorandomly enhanced logistic map[J]. Nonlinear Dynamics, 2017, 87: 407–425. doi: 10.1007/s11071-016-3051-3
|
臧鸿雁, 黄慧芳, 柴宏玉. 一类2次多项式混沌系统的均匀化方法研究[J]. 电子与信息学报, 2019, 41(7): 1618–1624. doi: 10.11999/JEIT180735
ZANG Hongyan, HUANG Huifang, and CHAI Hongyu. Homogenization method for the quadratic polynomial chaotic system[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1618–1624. doi: 10.11999/JEIT180735
|
臧鸿雁, 柴宏玉. 一个二次多项式混沌系统的均匀化及其熵分析[J]. 物理学报, 2016, 65(3): 030504. doi: 10.7498/aps.65.030504
ZANG Hongyan and CHAI Hongyu. Homogenization and entropy analysis of a quadratic polynomial chaotic system[J]. Acta Physica Sinica, 2016, 65(3): 030504. doi: 10.7498/aps.65.030504
|
徐正光, 田清, 田立. 一类可以产生独立同分布密钥流的混沌系统[J]. 物理学报, 2013, 62(13): 120501. doi: 10.7498/aps.62.120501
XU Zhengguang, TIAN Qing, and TIAN Li. A class of topologically conjugated chaotic maps of tent map to generate independently and uniformly distributed chaotic key stream[J]. Acta Physica Sinica, 2013, 62(13): 120501. doi: 10.7498/aps.62.120501
|
LIU Lingfeng, MIAO Suoxia, HU Hanping, et al. N-phase logistic chaotic sequence and its application for image encryption[J]. IET Signal Processing, 2016, 10(9): 1096–1104. doi: 10.1049/iet-spr.2015.0522
|
TONG Xiaojun, CUI Minggen, and WANG Zhu. A new feedback image encryption scheme based on perturbation with dynamical compound chaotic sequence cipher generator[J]. Optics Communications, 2009, 282(14): 2722–2728. doi: 10.1016/j.optcom.2009.03.075
|
TONG Xiaojun, ZHANG Miao, WANG Zhu, et al. A image encryption scheme based on dynamical perturbation and linear feedback shift register[J]. Nonlinear Dynamics, 2014, 78(3): 2277–2291. doi: 10.1007/s11071-014-1564-1
|
HAO Bolin. Starting with Parabola: An Introduction to Chaotic Dynamics[M]. 2nd ed. Beijing: Peking University Press, 2013: 114–118.
|
孙克辉, 贺少波, 何毅, 等. 混沌伪随机序列的谱熵复杂性分析[J]. 物理学报, 2013, 62(1): 010501. doi: 10.7498/aps.62.010501
SUN Kehui, HE Shaobo, HE Yi, et al. Complexity analysis of chaotic pseudo-random sequences based on spectral entropy algorithm[J]. Acta Physica Sinica, 2013, 62(1): 010501. doi: 10.7498/aps.62.010501
|
RUKHIN A, SOTO J, NECHVATAL J, et al. Special Publication 800-22 A statistical test suite for random and pseudorandom number generators for cryptographic applications[S]. U. S. Department of Commerce: National Institute of Standards and Technology, 2010.
|