Advanced Search
Volume 42 Issue 6
Jun.  2020
Turn off MathJax
Article Contents
Wenbin LIU, Jie CHEN, Gang FANG, Xiaolong SHI, Peng XU. Prediction of Drug Synergy and Antagonism Based on Drug-Drug Interaction Network[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1420-1427. doi: 10.11999/JEIT190867
Citation: Wenbin LIU, Jie CHEN, Gang FANG, Xiaolong SHI, Peng XU. Prediction of Drug Synergy and Antagonism Based on Drug-Drug Interaction Network[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1420-1427. doi: 10.11999/JEIT190867

Prediction of Drug Synergy and Antagonism Based on Drug-Drug Interaction Network

doi: 10.11999/JEIT190867
Funds:  The National Key R&D Program of China (2019YFA0706402), The National Natural Science Foundation of China (61572367, 61573017, 61972107, 61972109)
  • Received Date: 2019-11-01
  • Rev Recd Date: 2020-01-15
  • Available Online: 2020-02-18
  • Publish Date: 2020-06-22
  • Accurately predicting the synergistic and antagonistic relationship of drugs is helpful to the safety of drug use and the development of drug combination. A method for predicting drug synergy and antagonistic is proposed, which based on the Drug-Drug Interaction Network (DDINet) and its topological structure. From the result of feature selection, it can be seen that the feature constructed based on the interaction between the drug and its common neighbor node shows an obvious difference in the distribution of positive and negative samples, which can effectively reflect the drug synergy or antagonism. In the classification results using different feature classifiers, the optimal Area Under the Curve (AUC) and classification accuracy value reache 0.9687 and 0.9187 respectively. In the prediction results of synergy and antagonism, the prediction accuracy also reache above 0.45 and 0.75. This shows that the method based on network topology can effectively classify and predict the synergistic and antagonistic effects of drugs. Compared with the traditional methods based on similarity features of drug function, structure, target gene, etc, this method is simple and efficient to calculate, and can effectively promote the development of combination drugs.
  • loading
  • VAN ROON E N, FLIKWEERT S, LE COMTE M, et al. Clinical relevance of drug-drug interactions[J]. Drug Safety, 2005, 28(12): 1131–1139. doi: 10.2165/00002018-200528120-00007
    CHOU Tingchao. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies[J]. Pharmacological Reviews, 2006, 58(3): 621–681. doi: 10.1124/pr.58.3.10
    LEHÁR J, KRUEGER A S, AVERY W, et al. Synergistic drug combinations tend to improve therapeutically relevant selectivity[J]. Nature Biotechnology, 2009, 27(7): 659–666. doi: 10.1038/nbt.1549
    CHAIT R, CRANEY A, and KISHONY R. Antibiotic interactions that select against resistance[J]. Nature, 2007, 446(7136): 668–671. doi: 10.1038/nature05685
    VENKATAKRISHNAN K, VON MOLTKE L L, OBACH R S, et al. Drug metabolism and drug interactions: Application and clinical value of in vitro models[J]. Current Drug Metabolism, 2003, 4(5): 423–459. doi: 10.2174/1389200033489361
    PIRMOHAMED M and ORME M L. Drug Interactions of Clinical Importance[M]. DAVIES D M, FERNER R E, and DE GLANVILLE H. Davies's Textbook of Adverse Drug Reactions. 5th ed. London: Chapman & Hall, 1998: 888–912.
    TAKEDA T, HAO Ming, CHENG Tiejun, et al. Predicting drug-drug interactions through drug structural similarities and interaction networks incorporating pharmacokinetics and pharmacodynamics knowledge[J]. Journal of Cheminformatics, 2017, 9: 16. doi: 10.1186/s13321-017-0200-8
    FOKOUE A, SADOGHI M, HASSANZADEH O, et al. Predicting drug-drug interactions through large-scale similarity-based link prediction[C]. The 13th International Conference European Semantic Web Conference, Heraklion, Greece, 2016: 774–789. doi: 10.1007/978-3-319-34129-3_47.
    VILAR S, HARPAZ R, URIARTE E, et al. Drug—drug interaction through molecular structure similarity analysis[J]. Journal of the American Medical Informatics Association, 2012, 19(6): 1066–1074. doi: 10.1136/amiajnl-2012-000935
    VILAR S, URIARTE E, SANTANA L, et al. Detection of drug-drug interactions by modeling interaction profile fingerprints[J]. PLoS One, 2013, 8(3): e58321. doi: 10.1371/journal.pone.0058321
    KASTRIN A, FERK P, and LESKOŠEK B. Predicting potential drug-drug interactions on topological and semantic similarity features using statistical learning[J]. PLoS One, 2018, 13(5): e0196865. doi: 10.1371/journal.pone.0196865
    CHENG Feixiong and ZHAO Zhongming. Machine learning-based prediction of drug-drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties[J]. Journal of the American Medical Informatics Association, 2014, 21(e2): e278–e286. doi: 10.1136/amiajnl-2013-002512
    RYU J Y, KIM H U, and LEE S Y. Deep learning improves prediction of drug-drug and drug-food interactions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(18): E4304–E4311. doi: 10.1073/pnas.1803294115
    LUO Heng, ZHANG Ping, HUANG Hui, et al. DDI-CPI, a server that predicts drug-drug interactions through implementing the chemical-protein interactome[J]. Nucleic Acids Research, 2014, 42(W1): W46–W52. doi: 10.1093/nar/gku433
    ZHANG Ping, WANG Fei, HU Jianying, et al. Label propagation prediction of drug-drug interactions based on clinical side effects[J]. Scientific Reports, 2015, 5: 12339. doi: 10.1038/srep12339
    LIU Lili, CHEN Lei, ZHANG Yuhang, et al. Analysis and prediction of drug-drug interaction by minimum redundancy maximum relevance and incremental feature selection[J]. Journal of Biomolecular Structure and Dynamics, 2017, 35(2): 312–329. doi: 10.1080/07391102.2016.1138142
    TAKARABE M, SHIGEMIZU D, KOTERA M, et al. Network-based analysis and characterization of adverse drug-drug interactions[J]. Journal of Chemical Information and Modeling, 2011, 51(11): 2977–2985. doi: 10.1021/ci200367w
    GOTTLIEB A, STEIN G Y, ORON Y, et al. INDI: A computational framework for inferring drug interactions and their associated recommendations[J]. Molecular Systems Biology, 2012, 8: 592. doi: 10.1038/msb.2012.26
    WISHART D S, FEUNANG Y D, GUO A C, et al. DrugBank 5.0: A major update to the DrugBank database for 2018[J]. Nucleic Acids Research, 2017, 46(D1): D1074–D1082. doi: 10.1093/nar/gkx1037
    CORTES C and VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273–297. doi: 10.1007/bf00994018
    陈素根, 吴小俊. 基于特征值分解的中心支持向量机算法[J]. 电子与信息学报, 2016, 38(3): 557–564. doi: 10.11999/JEIT150693

    CHEN Sugen and WU Xiaojun. Eigenvalue proximal support vector machine algorithm based on eigenvalue decoposition[J]. Journal of Electronics &Information Technology, 2016, 38(3): 557–564. doi: 10.11999/JEIT150693
    汪廷华, 田盛丰, 黄厚宽. 特征加权支持向量机[J]. 电子与信息学报, 2009, 31(3): 514–518. doi: 10.3724/SP.J.1146.2007.01711

    WANG Tinghua, TIAN Shengfeng, and HUANG Houkuan. Feature weighted support vector machine[J]. Journal of Electronics &Information Technology, 2009, 31(3): 514–518. doi: 10.3724/SP.J.1146.2007.01711
    WU Shaomin and FLACH P. A scored AUC metric for classifier evaluation and selection[C]. ICML 2005 Workshop on ROC Analysis in Machine Learning, Bonn, Germany, 2005.
    HOSSIN M and SULAIMAN M N. A review on evaluation metrics for data classification evaluations[J]. International Journal of Data Mining & Knowledge Management Process, 2015, 5(2): 1–11. doi: 10.5121/ijdkp.2015.5201
    ARLOT S and CELISSE A. A survey of cross-validation procedures for model selection[J]. Statistics Surveys, 2010, 4: 40–79. doi: 10.1214/09-SS054
    LIU Weiping and LÜ Linyuan. Link prediction based on local random walk[J]. EPL (Europhysics Letters) , 2010, 89(5): 58007. doi: 10.1209/0295-5075/89/58007
    TANG Jiliang, ALELYANI S, and LIU Huan. Feature Selection for Classification: A Review[M]. AGGARWAL C C. Data Classification: Algorithms and Applications. New York: CRC Press, 2014: 37.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (2625) PDF downloads(100) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return