Advanced Search
Volume 42 Issue 4
Jun.  2020
Turn off MathJax
Article Contents
Yiran SHEN, Fupeng LI, Guangyi WANG. The Role of Parasitic Elements in Fading Memory of A Charge Controlled Memristor[J]. Journal of Electronics & Information Technology, 2020, 42(4): 844-850. doi: 10.11999/JEIT190865
Citation: Yiran SHEN, Fupeng LI, Guangyi WANG. The Role of Parasitic Elements in Fading Memory of A Charge Controlled Memristor[J]. Journal of Electronics & Information Technology, 2020, 42(4): 844-850. doi: 10.11999/JEIT190865

The Role of Parasitic Elements in Fading Memory of A Charge Controlled Memristor

doi: 10.11999/JEIT190865
Funds:  The National Natural Science Foundation of China(61771176, 61801154)
  • Received Date: 2019-11-01
  • Rev Recd Date: 2019-12-26
  • Available Online: 2020-01-06
  • Publish Date: 2020-06-04
  • In the presence of parasitic elements, fading memory may occur in charge controlled memristors. The effects of parasitic resistance and capacitance on the dynamic characteristics of memristor are studied by using the dynamic route map and simulation method. The oretical and simulation analysis shows that the ideal charge controlled (current controlled) memristor does not have fading memory when the parasitic resistance or capacitance exists alone under the excitation of DC and AC, but fading memory occurs when the parasitic resistance and capacitance exist at the same time. The mechanism is that the parasitic elements form discharge path, which leads to fading memory of the charge controlled memristor.
  • loading
  • CHUA L O. Memristor—the missing circuit element[J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507–519. doi: 10.1109/TCT.1971.1083337
    CHUA L O and KANG S M. Memristive devices and systems[J]. Proceedings of the IEEE, 1976, 64(2): 209–223. doi: 10.1109/PROC.1976.10092
    STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found[J]. Nature, 2008, 453(7191): 80–83. doi: 10.1038/nature06932
    TOUR J M and HE Tao. Electronics: The fourth element[J]. Nature, 2008, 453(7191): 42–43. doi: 10.1038/453042a
    YANG J J, PICKETT M D, LI Xuema, et al. Memristive switching mechanism for metal/oxide/metal nanodevices[J]. Nature Nanotechnology, 2008, 3(7): 429–433. doi: 10.1038/nnano.2008.160
    VONGEHR S and MENG Xiangkang. The missing memristor has not been found[J]. Scientific Reports, 2015, 5(1): 11657. doi: 10.1038/srep11657
    ASCOLI A, TETZLAFF R, CHUA L O, et al. History erase effect in a non-volatile Memristor[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63(3): 389–400. doi: 10.1109/TCSI.2016.2525043
    ASCOLI A, TETZLAFF R, CHUA L O, et al. Fading memory effects in a memristor for cellular nanoscale network applications[C]. The 2016 Design, Automation & Test in Europe Conference & Exhibition, Dresden, Germany, 2016: 421–425.
    MENZEL S, WASER R, SIEMON A, et al. On the origin of the fading memory effect in ReRAMs[C]. The 27th IEEE 2017 International Symposium on Power and Timing Modeling, Optimization and Simulation, Thessaloniki, Greece, 2017: 1–5.
    ASCOLI A, TETZLAFF R, and CHUA L O. The first ever real Bistable Memristors—Part I: Theoretical insights on local fading memory[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2016, 63(12): 1091–1095. doi: 10.1109/TCSII.2016.2604567
    ASCOLI A, TETZLAFF R, and CHUA L O. The first ever real bistable memristors -- Part Ⅱ: Design and analysis of a local fading memory system[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2016, 63(12): 1096–1100. doi: 10.1109/TCSII.2016.2613560
    ASCOLI A, TETZLAFF R, and MENZEL S. Exploring the dynamics of real-world Memristors on the basis of circuit theoretic model predictions[J]. IEEE Circuits and Systems Magazine, 2018, 18(2): 48–76. doi: 10.1109/MCAS.2018.2821760
    CHUA L. Five non-volatile memristor enigmas solved[J]. Applied Physics A, 2018, 124(8): Artical No. 563. doi: 10.1007/s00339-018-1971-0
    BOYD S and CHUA L. Fading memory and the problem of approximating nonlinear operators with Volterra series[J]. IEEE Transactions on Circuits and Systems, 1985, 32(11): 1150–1161. doi: 10.1109/TCS.1985.1085649
    CHUA L. Everything you wish to know about memristors but are afraid to ask[J]. Radioengineering, 2015, 24(2): 319–368. doi: 10.13164/re.2015.0319
    ASCOLI A, SLESAZECK S, MAHNE H, et al. Nonlinear dynamics of a locally-active memristor[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(4): 1165–1174. doi: 10.1109/TCSI.2015.2413152
    CHUA L O. 3 new theorems on memristors[C]. The 7th Workshop and MC Meeting Memristors-Devices, Models, Circuits, Systems and Applications, Dubrovnik, Croatia, 2018.
    CORINTO F, ASCOLI A, and GILLI M. Analysis of current-voltage characteristics for memristive elements in pattern recognition systems[J]. International Journal of Circuit Theory and Applications, 2012, 40(12): 1277–1320. doi: 10.1002/cta.1804
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (2402) PDF downloads(129) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return