Advanced Search
Volume 42 Issue 6
Jun.  2020
Turn off MathJax
Article Contents
Yafei DONG, Wenxiao HU, Mengyao QIAN, Yue WANG. DNA Aptamer-based Fluorescence Biosensor[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1374-1382. doi: 10.11999/JEIT190860
Citation: Yafei DONG, Wenxiao HU, Mengyao QIAN, Yue WANG. DNA Aptamer-based Fluorescence Biosensor[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1374-1382. doi: 10.11999/JEIT190860

DNA Aptamer-based Fluorescence Biosensor

doi: 10.11999/JEIT190860
Funds:  The National Natural Science Foundation of China (61572302), The Natural Science Basic Research Plan in Shaanxi Province of China (2020JM-298)
  • Received Date: 2019-11-01
  • Rev Recd Date: 2020-03-14
  • Available Online: 2020-04-03
  • Publish Date: 2020-06-22
  • In recent years, with the rapid development of DNA nanotechnology, fluorescence biosensors based on DNA as aptamer are studied and constructed by a large number of scholars in order to realize the sensitive and rapid detection of target materials. As a new branch of DNA nanotechnology, fluorescence biosensors based on DNA aptamer have great application. The fluorescence biosensors based on DNA aptamers are summarized. The realization of fluorescence signal contains fluorescent dyes and non-fluorescent dye labeled. Enhancement of fluorescence signals involve enzyme-assisted, chain replacement reaction and both of all mediated target circulation and signals amplification strategy. On this basis, the fluorescence biosensor based on DNA aptamer is prospected and some suggestions are put forward.
  • loading
  • 樊春梅, 刘冬生. DNA纳米技术: 分子传感、计算与机器[M]. 北京: 科学出版社, 2011: 65.

    FAN Chunmei and LIU Dongsheng. DNA Nanotechnology: Molecular Sensing, Computing and Machines [M]. Beijing: Science Press, 2011: 65.
    ELLINGTON A D and SZOSTAK J W. In vitro selection of RNA molecules that bind specific ligands[J]. Nature, 1990, 346(6287): 818–822. doi: 10.1038/346818a0
    TUERK C and GOLD L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase[J]. Science, 1990, 249(4968): 505–510. doi: 10.1126/science.2200121
    DHIMAN A, KALRA P, BANSAL V, et al. Aptamer-based point-of-care diagnostic platforms[J]. Sensors and Actuators B: Chemical, 2017, 246: 535–553. doi: 10.1016/j.snb.2017.02.060
    SAPSFORD K E, BERTI L, and MEDINTZ I L. Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations[J]. Angewandte Chemie International Edition, 2006, 45(28): 4562–4589. doi: 10.1002/anie.200503873
    MAZUMDER S, DEY R, MITRA M K, et al. Review: Biofunctionalized quantum dots in biology and medicine[J]. Journal of Nanomaterials, 2009: 38. doi: 10.1155/2009/815734
    SUN Yali, FAN Jianfeng, CUI Linyan, et al. Fluorometric nanoprobes for simultaneous aptamer-based detection of carcinoembryonic antigen and prostate specific antigen[J]. Mikrochimica Acta, 2019, 186(3): 152. doi: 10.1007/s00604-019-3281-4
    CHEN Xueqian, CHEN Shufan, HU Tianyu, et al. Fluorescent aptasensor for adenosine based on the use of quaternary CuInZnS quantum dots and gold nanoparticles[J]. Microchimica Acta, 2017, 184(5): 1361–1367. doi: 10.1007/s00604-017-2128-0
    LU Yizhong and CHEN Wei. Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries[J]. Chemical Society Reviews, 2012, 41(9): 3594–3623. doi: 10.1039/c2cs15325d
    ZHANG Manman, GAO Ge, DING Yalin, et al. A fluorescent aptasensor for the femtomolar detection of epidermal growth factor receptor-2 based on the proximity of G-rich sequences to Ag nanoclusters[J]. Talanta, 2019, 199: 238–243. doi: 10.1016/j.talanta.2019.02.014
    LEE S T, RAHMAN R, MUTHOOSAMY K, et al. Amplification-free and direct fluorometric determination of telomerase activity in cell lysates using chimeric DNA-templated silver nanoclusters[J]. Microchimica Acta, 2019, 186(2): 81. doi: 10.1007/s00604-018-3194-7
    KUNINGAS K, RANTANEN T, UKONAHO T, et al. Homogeneous assay technology based on upconverting phosphors[J]. Analytical Chemistry, 2005, 77(22): 7348–7355. doi: 10.1021/ac0510944
    WANG Leyu, YAN Ruoxue, HUO Ziyang, et al. Fluorescence resonant energy transfer biosensor based on upconversion‐luminescent nanoparticles[J]. Angewandte Chemie International Edition, 2005, 44(37): 6054–6057. doi: 10.1002/anie.200501907
    LI Hui, SUN Deen, LIU Yajie, et al. An ultrasensitive homogeneous aptasensor for kanamycin based on upconversion fluorescence resonance energy transfer[J]. Biosensors and Bioelectronics, 2014, 55: 149–156. doi: 10.1016/j.bios.2013.11.079
    WANG Yujie, WEI Zikai, LUO Xianda, et al. An ultrasensitive homogeneous aptasensor for carcinoembryonic antigen based on upconversion fluorescence resonance energy transfer[J]. Talanta, 2019, 195: 33–39. doi: 10.1016/j.talanta.2018.11.011
    HE Yue, LIN Yi, TANG Hongwu, et al. A graphene oxide-based fluorescent aptasensor for the turn-on detection of epithelial tumor marker mucin 1[J]. Nanoscale, 2012, 4(6): 2054–2059. doi: 10.1039/C2NR12061E
    DOLATI S, RAMEZANI M, NABAVINIA M S, et al. Selection of specific aptamer against enrofloxacin and fabrication of graphene oxide based label-free fluorescent assay[J]. Analytical Biochemistry, 2018, 549: 124–129. doi: 10.1016/j.ab.2018.03.021
    ZHAO Lianjing, CHENG Ming, LIU Guannan, et al. A fluorescent biosensor based on molybdenum disulfide nanosheets and protein aptamer for sensitive detection of carcinoembryonic antigen[J]. Sensors and Actuators B: Chemical, 2018, 273: 185–190. doi: 10.1016/j.snb.2018.06.004
    CHEN Feng, LIU Yi, CHEN Chunyan, et al. Respective and simultaneous detection tumor markers CA125 and STIP1 using aptamer-based fluorescent and RLS sensors[J]. Sensors and Actuators B: Chemical, 2017, 245: 470–476. doi: 10.1016/j.snb.2017.01.155
    YI Haoyang, YAN Zhiyu, WANG Lumei, et al. Fluorometric determination for ofloxacin by using an aptamer and SYBR Green I[J]. Microchimica Acta, 2019, 186(10): 668. doi: 10.1007/s00604-019-3788-8
    BAHREYNI A, TAHMASEBI S, RAMEZANI M, et al. A novel fluorescent aptasensor for sensitive detection of PDGF-BB protein based on a split complementary strand of aptamer and magnetic beads[J]. Sensors and Actuators B: Chemical, 2019, 280: 10–15. doi: 10.1016/j.snb.2018.10.047
    LIN Sheng, HE Bingyong, YANG Chao, et al. Luminescence switch-on assay of interferon-gamma using a G-quadruplex-selective iridium(III) complex[J]. Chemical communications, 2015, 51(89): 16033–16036. doi: 10.1039/C5CC06655G
    CHEN Mingjian, MA Changbei, YAN Ying, et al. A label-free fluorescence method based on terminal deoxynucleotidyl transferase and thioflavin T for detecting prostate-specific antigen[J]. Analytical and Bioanalytical Chemistry, 2019, 411(22): 5779–5784. doi: 10.1007/s00216-019-01958-0
    WEI Yulian, ZHOU Wenjiao, LIU Jun, et al. Label-free and homogeneous aptamer proximity binding assay for fluorescent detection of protein biomarkers in human serum[J]. Talanta, 2015, 141: 230–234. doi: 10.1016/j.talanta.2015.04.005
    TANG Xiaomin, LI Xiaotong, MA D L, et al. A label-free triplex-to-G-qadruplex molecular switch for sensitive fluorescent detection of acetamiprid[J]. Talanta, 2018, 189: 599–605. doi: 10.1016/j.talanta.2018.07.025
    GUO Limin and ZHAO Qiang. Determination of the platelet-derived growth factor BB by a competitive thrombin-linked aptamer-based Fluorometric assay[J]. Microchimica Acta, 2016, 183(12): 3229–3235. doi: 10.1007/s00604-016-1978-1
    ALI M M, LI Feng, ZHANG Zhiqing, et al. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine[J]. Chemical Society Reviews, 2018, 43(10): 3324–3341. doi: 10.1039/C3CS60439J
    LI Lu, WANG Qian, FENG Jie, et al. Highly sensitive and homogeneous detection of membrane protein on a single living cell by aptamer and nicking enzyme assisted signal amplification based on microfluidic droplets[J]. ACS Publications, 2014, 86(10): 5101–5107. doi: 10.1021/ac500881p
    ZHANG Zhonghui, ZHANG Feng, HE Peng, et al. Fluorometric determination of mercury(II) by using thymine-thymine mismatches as recognition elements, toehold binding, and enzyme-assisted signal amplification[J]. Microchimica Acta, 2019, 186(8): 1–6. doi: 10.1007/s00604-019-3683-3
    ZHANG Zhenzhu and ZHANG Chunyang. Highly sensitive detection of protein with aptamer-based target-triggering two-stage amplification[J]. ACS Publications, 2012, 84(3): 1623–1629. doi: 10.1021/ac2029002
    ZHEN Zhen, LIU Jinwen, QIAN Wen, et al. Homogeneous label-free protein binding assay using small-molecule-labeled DNA nanomachine with DNAzyme-Based chemiluminescence detection[J]. Talanta, 2020, 206: 120175. doi: 10.1016/j.talanta.2019.120175
    HUANG Ru, LIAO Yuhui, ZHOU Xiaoming, et al. Toehold-mediated nonenzymatic amplification circuit on graphene oxide fluorescence switching platform for sensitive and homogeneous microRNA detection[J]. Analytica Chimica Acta, 2015, 888: 162–172. doi: 10.1016/j.aca.2015.07.041
    WANG Xiuzhong, JIANG Aiwen, HOU Ting, et al. Enzyme-free and label-free fluorescence aptasensing strategy for highly sensitive detection of protein based on target-triggered hybridization chain reaction amplification[J]. Biosensors and Bioelectronics, 2015, 70: 324–329. doi: 10.1016/j.bios.2015.03.053
    HU Jiaming, SHENG Yan, KWAK K J, et al. A signal-amplifiable biochip quantifies extracellular vesicle-associated RNAs for early cancer detection[J]. Nature Communications, 2017, 8(1): 1683. doi: 10.1038/s41467-017-01942-1
    ZHANG Xiaobing, ZHANG Zidong, XING Hang, et al. Catalytic and molecular beacons for amplified detection of metal ions and organic molecules with high sensitivity[J]. ACS Publications, 2010, 82(12): 5005–5011. doi: 10.1021/ac1009047
    SATO S, FUJITA K, KANAZAWA M, et al. Electrochemical assay for deoxyribonuclease I activity[J]. Analytical Biochemistry, 2008, 381(2): 233–239. doi: 10.1016/j.ab.2008.07.014
    ZHANG Jun, RAN Fengying, ZHOU Wenbo, et al. Ultrasensitive fluorescent aptasensor for MUC1 detection based on deoxyribonuclease I-aided target recycling signal amplification[J]. RSC Advances, 2018, 8(56): 32009–32015. doi: 10.1039/C8RA06498A
    WANG Hui, CHEN Hui, HUANG Zhipeng, et al. DNase I enzyme-aided fluorescence signal amplification based on graphene oxide-DNA aptamer interactions for colorectal cancer exosome detection[J]. Talanta, 2018, 184: 219–226. doi: 10.1016/j.talanta.2018.02.083
    CHAN S H, ZHU Zhenyu, VAN ETTEN J L, et al. Cloning of CviPII nicking and modification system from chlorella virus NYs-1 and application of Nt.CviPII in random DNA amplification[J]. Nucleic Acids Research, 2004, 32(21): 6187–6199. doi: 10.1093/nar/gkh958
    LI Xiang, DING Xuelian and FAN Jing. Nicking endonuclease-assisted signal amplification of a split molecular aptamer beacon for biomolecule detection using graphene oxide as a sensing platform[J]. Analyst, 2015, 140(23): 7918–7925. doi: 10.1039/c5an01759a
    NING Yi, HU Jue, WEI Ke, et al. Fluorometric determination of mercury(II) via a graphene oxide-based assay using exonuclease III-assisted signal amplification and thymidine-Hg(II)-thymidine interaction[J]. Microchimica Acta, 2019, 186(4): 216. doi: 10.1007/s00604-019-3332-x
    XIAO Xue, TAO Jing, ZHANG Hongzhi, et al. Exonuclease III-assisted graphene oxide amplified fluorescence anisotropy strategy for ricin detection[J]. Biosensors and Bioelectronics, 2016, 85: 822–827. doi: 10.1016/j.bios.2016.05.091
    CUI Miao, XIAO Xianjin, ZHAO Meiping, et al. Detection of single nucleotide polymorphism by measuring extension kinetics with T7 exonuclease mediated isothermal amplification[J]. Analyst, 2018, 143(1): 116–122. doi: 10.1039/C7AN00875A
    JACOBSEN H, KLENOW H, and OVERGAARD-HANSEN K. The N-terminal amino-acid sequences of DNA polymerase I from Escherichia coli and of the large and the small fragments obtained by a limited proteolysis[J]. European Journal of Biochemistry, 1974, 45(2): 623–627. doi: 10.1111/j.1432-1033.1974.tb03588.x
    DERBYSHIRE V, FREEMONT P S, SANDERSON M R, et al. Genetic and crystallographic studies of the 3’, 5’-exonucleolytic site of DNA polymerase I[J]. Science, 1988, 240(4849): 199–201. doi: 10.1126/science.2832946
    ZHANG D Y and SEELIG G. Dynamic DNA nanotechnology using strand-displacement reactions[J]. Nature Chemistry, 2011, 3(2): 103–113. doi: 10.1038/nchem.957
    DIRKS R M and PIERCE N A. Triggered amplification by hybridization chain reaction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(43): 15275–15278. doi: 10.1073/pnas.0407024101
    LI Junlong, SUN Kexin, CHEN Zhongping, et al. A fluorescence biosensor for VEGF detection based on DNA assembly structure switching and isothermal amplification[J]. Biosensors and Bioelectronics, 2017, 89: 964–969. doi: 10.1016/j.bios.2016.09.078
    ZHOU Qingzhen, YAN Hongxia, RAN Fengying, et al. Ultrasensitive enzyme-free fluorescent detection of VEGF165 based on target-triggered hybridization chain reaction amplification[J]. RSC Advances, 2018, 8(45): 25955–25960. doi: 10.1039/C8RA04721A
    LI Qiong, LIU Zhi, ZHOU Danhua, et al. A cascade toehold-mediated strand displacement strategy for label-free and sensitive non-enzymatic recycling amplification detection of the HIV-1 gene[J]. Analyst, 2019, 144(6): 2173–2178. doi: 10.1039/C8AN02340A
    YIN Peng, CHOI H M T, CALVERT C R, et al. Programming biomolecular self-assembly pathways[J]. Nature, 2008, 451(7176): 318–322. doi: 10.1038/nature06451
    XU Jiayao, SHI Ming, HUANG Huakui, et al. A fluorescent aptasensor based on single oligonucleotide-mediated isothermal quadratic amplification and graphene oxide fluorescence quenching for ultrasensitive protein detection[J]. Analyst, 2018, 143(16): 3918–3925. doi: 10.1039/c8an01032c
    ZHOU Jie, MENG Lingchang, YE Weiran, et al. A sensitive detection assay based on signal amplification technology for Alzheimer’s disease’s early biomarker in exosome[J]. Analytica Chimica Acta, 2018, 1022: 124–130. doi: 10.1016/j.aca.2018.03.016
    YANG Wenting, ZHOU Xingxing, ZHAO Jianmin, et al. A cascade amplification strategy of catalytic hairpin assembly and hybridization chain reaction for the sensitive fluorescent assay of the model protein carcinoembryonic antigen[J]. Microchimica Acta, 2018, 185(2): 100. doi: 10.1007/s00604-017-2620-6
    ZHANG Zheng, HAN Jialun, LI Yitan, et al. A sensitive and recyclable fluorescence aptasensor for detection and extraction of platelet-derived growth factor BB[J]. Sensors and Actuators B: Chemical, 2018, 277: 179–185. doi: 10.1016/j.snb.2018.09.013
    HU Kun, LIU Jinwen, CHEN Jia, et al. An amplified graphene oxide-based fluorescence aptasensor based on target-triggered aptamer hairpin switch and strand-displacement polymerization recycling forbioassays[J]. Biosensors and Bioelectronics, 2013, 42: 598–602. doi: 10.1016/j.bios.2012.11.025
    LI Chunhong, XIAO Xue, TAO Jing, et al. A graphene oxide-based strand displacement amplification platform for ricin detection using aptamer as recognition element[J]. Biosensors and Bioelectronics, 2017, 91: 149–154. doi: 10.1016/j.bios.2016.12.010
    HE Jinglin, ZHANG Yang, YANG Chan, et al. Hybridization chain reaction based DNAzyme fluorescent sensor for L-histidine assay[J]. Analytical Methods, 2019, 11(16): 2204–2210. doi: 10.1039/C9AY00526A
    YIN Jinjin, LIU Yaqing, WANG Shuo, et al. Engineering a universal and label-free evaluation method for mycotoxins detection based on strand displacement amplification and G-quadruplex signal amplification[J]. Sensors and Actuators B: Chemical, 2018, 256: 573–579. doi: 10.1016/j.snb.2017.10.083
    CHEN Piaopiao, HUANG Ke, ZHANG Peng, et al. Exonuclease III-assisted strand displacement reaction-driven cyclic generation of G-quadruplex strategy for homogeneous fluorescent detection of melamine[J]. Talanta, 2019, 203: 255–260. doi: 10.1016/j.talanta.2019.05.020
    DARWISH I A, WANI T A, KHALIL N Y, et al. Novel automated flow-based immunosensor for real-time measurement of the breast cancer biomarker CA15–3 in serum[J]. Talanta, 2012, 97: 499–504. doi: 10.1016/j.talanta.2012.05.005
    LOISEAU A, ZHANG Lu, HU D, et al. Core-shell gold/silver nanoparticles for localized surface plasmon resonance-based naked-eye toxin biosensing[J]. ACS Applied Materials & Interfaces, 2019, 11(50): 46462–46471. doi: 10.1021/acsami.9b14980
    CHUANG C S, WU C Y, JUAN P H, et al. LMP1 gene detection using a capped gold nanowire array surface plasmon resonance sensor in a microfluidic chip[J]. Analyst, 2020, 145(1): 52–60. doi: 10.1039/c9an01419e
    GHODAKE G, SHINDE S, SARATALE R G, et al. Silver nanoparticle probe for colorimetric detection of aminoglycoside antibiotics: picomolar-level sensitivity toward streptomycin in water, serum, and milk samples[J]. Journal of the Science of Food and Agriculture, 2020, 100(2): 874–884. doi: 10.1002/jsfa.10129
    ZHAO Lifang, WEI Qin, WU Hua, et al. Ionic liquid functionalized graphene based immunosensor for sensitive detection of carbohydrate antigen 15–3 integrated with Cd2+-functionalized nanoporous TiO2 as labels[J]. Biosensors and Bioelectronics, 2014, 59: 75–80. doi: 10.1016/j.bios.2014.03.006
    JIANG Xinya, WANG Haijun, YUAN Ruo, et al. Sensitive electrochemiluminescence detection for CA15–3 based on immobilizing luminol on dendrimer functionalized ZnO nanorods[J]. Biosensors and Bioelectronics, 2015, 63: 33–38. doi: 10.1016/j.bios.2014.07.009
    HAMD-GHADAREH S, SALIMI A, PARSA S, et al. Simultaneous biosensing of CA125 and CA15–3 tumor markers and imaging of OVCAR-3 and MCF-7 cells lines via bi-color FRET phenomenon using dual blue-green luminescent carbon dots with single excitation wavelength[J]. International Journal of Biological Macromolecules, 2018, 118: 617–628. doi: 10.1016/j.ijbiomac.2018.06.116
    LU Zijing, WANG Peng, XIONG Weiwei, et al. Simultaneous detection of mercury (II), lead (II) and silver (I) based on fluorescently labelled aptamer probes and graphene oxide[J]. Environmental Technology, 2020, 317: 1–27. doi: 10.1080/09593330.2020.1721565
    田威, 黄高明. 非理想关联下多传感器系统误差的稳健估计[J]. 电子与信息学报, 2018, 40(3): 641–647. doi: 10.11999/JEIT170579

    TIAN Wei and HUANG Gaoming. Robust multisensor bias estimation under nonideal association[J]. Journal of Electronics &Information Technology, 2018, 40(3): 641–647. doi: 10.11999/JEIT170579
    YANG Jing, DONG Chen, DONG Yafei, et al. Logic nanoparticle beacon triggered by the binding-induced effect of multiple inputs[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 14486–14492. doi: 10.1021/am5036994
    YANG Jing, JIANG Shuoxing, LIU Xiangrong, et al. Aptamer-binding directed DNA origami pattern for logic gates[J]. ACS Applied Materials & Interfaces, 2016, 8(49): 34054–34060. doi: 10.1021/acsami.6b10266
    PAN Linqiang, WANG Zhiyu, LI Yifan, et al. Nicking enzyme-controlled toehold regulation for DNA logic circuits[J]. Nanoscale, 2017, 9(46): 18223–18228. doi: 10.1039/C7NR06484E
    YANG Jing, WU Ranfeng, LI Yifan, et al. Entropy-driven DNA logic circuits regulated by DNAzyme[J]. Nucleic Acids Research, 2018, 46(16): 8532–8541. doi: 10.1093/nar/gky663
    刘素艳, 刘元安, 吴帆, 等. 物联网中基于相似性计算的传感器搜索[J]. 电子与信息学报, 2018, 40(12): 3020–3027. doi: 10.11999/JEIT171085

    LIU Suyan, LIU Yuanan, WU Fan, et al. Sensor search based on sensor similarity computing in the internet of things[J]. Journal of Electronics &Information Technology, 2018, 40(12): 3020–3027. doi: 10.11999/JEIT171085
    RANALLO S, PRÉVOST-TREMBLAY C, IDILI A, et al. Antibody-powered nucleic acid release using a DNA-based nanomachine[J]. Nature Communications, 2017, 8: 15150. doi: 10.1038/ncomms15150
    沈贺, 张立明, 张智军. 石墨烯在生物医学领域的应用[J]. 东南大学学报(医学版), 2011, 30(1): 218–223. doi: 10.3969/j.issn.1671-6264.2011.01.035

    SHEN He, ZHANG Liming, and ZHANG Zhijun. Graphene for biomedical applications[J]. Journal of Southeast University (Medical Science Edition), 2011, 30(1): 218–223. doi: 10.3969/j.issn.1671-6264.2011.01.035
    LIU Zhuang, ROBINSON J T, SUN Xiaoming, et al. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs[J]. Journal of the American Chemical Society, 2008, 130(33): 10876–10877. doi: 10.1021/ja803688x
    XU Fei, WU Tingfang, SHI Xiaolong, et al. A study on a special DNA nanotube assembled from two single-stranded tiles[J]. Nanotechnology, 2019, 30(11): 115602. doi: 10.1088/1361-6528/aaf9bc
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4291) PDF downloads(292) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return