Advanced Search
Volume 42 Issue 4
Jun.  2020
Turn off MathJax
Article Contents
Mo CHEN, Chengjie CHEN, Bocheng BAO, Quan XU. Initial Sensitive Dynamics in Memristor Synapse-coupled Hopfield Neural Network[J]. Journal of Electronics & Information Technology, 2020, 42(4): 870-877. doi: 10.11999/JEIT190858
Citation: Mo CHEN, Chengjie CHEN, Bocheng BAO, Quan XU. Initial Sensitive Dynamics in Memristor Synapse-coupled Hopfield Neural Network[J]. Journal of Electronics & Information Technology, 2020, 42(4): 870-877. doi: 10.11999/JEIT190858

Initial Sensitive Dynamics in Memristor Synapse-coupled Hopfield Neural Network

doi: 10.11999/JEIT190858
Funds:  The National Natural Science Foundation of China (51777016, 61801054, 61601062), The Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (KYCX19_1767)
  • Received Date: 2019-11-01
  • Rev Recd Date: 2020-01-20
  • Available Online: 2020-03-13
  • Publish Date: 2020-06-04
  • The initial sensitive dynamics in a Hopfield Neural Network (HNN) with three neurons under the action of electromagnetic induction current is reported. A simple 4-D memristive HNN is constructed by using a non-ideal memristor synapse to imitate the electromagnetic induction current caused by membrane potential difference between two adjacent neurons. By means of theoretical analyses and numerical simulations, the complex dynamical behaviors under different coupling strengths of the memristor synapse are researched, and special phenomena closely related to the initial values are revealed. Finally, the analog equivalent realization circuit of the memristive HNN model is designed, and the correctness of MATLAB numerical simulation is verified by PSIM circuit simulations.
  • loading
  • HOPFIELD J J. Neurons with graded response have collective computational properties like those of two-state neurons[J]. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(10): 3088–3092. doi: 10.1073/pnas.81.10.3088
    KORN H and FAURE P. Is there chaos in the brain? II. Experimental evidence and related models[J]. Comptes Rendus Biologies, 2003, 326(9): 787–840. doi: 10.1016/j.crvi.2003.09.011
    MA Jun and TANG Jun. A review for dynamics in neuron and neuronal network[J]. Nonlinear Dynamics, 2017, 89(3): 1569–1578. doi: 10.1007/s11071-017-3565-3
    阮秀凯, 张志涌. 基于连续Hopfield型神经网络的QAM信号盲检测[J]. 电子与信息学报, 2011, 33(7): 1600–1605. doi: 10.3724/SP.J.1146.2010.01271

    RUAN Xiukai and ZHANG Zhiyong. Blind detection of QAM signals using continuous Hopfield-type neural network[J]. Journal of Electronics &Information Technology, 2011, 33(7): 1600–1605. doi: 10.3724/SP.J.1146.2010.01271
    HILLAR C J and TRAN N M. Robust exponential memory in Hopfield networks[J]. The Journal of Mathematical Neuroscience, 2018, 8: 1–20. doi: 10.1186/s13408-017-0056-2
    王春华, 蔺海荣, 孙晶如, 等. 基于忆阻器的混沌、存储器及神经网络电路研究进展[J]. 电子与信息学报, 2020, 42(4): 795–810. doi: 10.11999/JEIT190821

    WANG Chunhua, LIN Hairong, SUN Jingru, et al. Research progress on chaos, memory and neural network circuits based on memristor[J]. Journal of Electronics &Information Technology, 2020, 42(4): 795–810. doi: 10.11999/JEIT190821
    NJITACKE Z T and KENGNE J. Complex dynamics of a 4D Hopfield Neural Networks (HNNs) with a nonlinear synaptic weight: Coexistence of multiple attractors and remerging Feigenbaum trees[J]. AEU-International Journal of Electronics and Communications, 2018, 93: 242–252. doi: 10.1016/j.aeue.2018.06.025
    DANCA M F and KUZNETSOV N. Hidden chaotic sets in a Hopfield neural system[J]. Chaos, Solitons & Fractals, 2017, 103: 144–150. doi: 10.1016/j.chaos.2017.06.002
    RAJAGOPAL K, MUNOZ-PACHECO J M, PHAM V T, et al. A Hopfield neural network with multiple attractors and its FPGA design[J]. The European Physical Journal Special Topics, 2018, 227(7/9): 811–820. doi: 10.1140/epjst/e2018-800018-7
    BAO Bocheng, CHEN Chengjie, BAO Han, et al. Dynamical effects of neuron activation gradient on Hopfield neural network: Numerical analyses and hardware experiments[J]. International Journal of Bifurcation and Chaos, 2019, 29(4): 1930010. doi: 10.1142/S0218127419300106
    NJITACKE Z T, KENGNE J, FOZIN T F, et al. Dynamical analysis of a novel 4-neurons based Hopfield neural network: emergences of antimonotonicity and coexistence of multiple stable states[J]. International Journal of Dynamics and Control, 2019, 7(3): 823–841. doi: 10.1007/s40435-019-00509-w
    刘益春, 林亚, 王中强, 等. 氧化物基忆阻型神经突触器件[J]. 物理学报, 2019, 68(16): 168504. doi: 10.7498/aps.68.20191262

    LIU Yichun, LIN Ya, WANG Zhongqiang, et al. Oxide-based memristive neuromorphic synaptic devices[J]. Acta Physica Sinica, 2019, 68(16): 168504. doi: 10.7498/aps.68.20191262
    PHAM V T, JAFARI S, VAIDYANATHAN S, et al. A novel memristive neural network with hidden attractors and its circuitry implementation[J]. Science China Technological Sciences, 2016, 59(3): 358–363. doi: 10.1007/s11431-015-5981-2
    BAO Bocheng, QIAN Hui, XU Quan, et al. Coexisting behaviors of asymmetric attractors in hyperbolic-type memristor based Hopfield neural network[J]. Frontiers in Computational Neuroscience, 2017, 11: No. 81, 1–14. doi: 10.3389/fncom.2017.00081
    HU Xiaoyu, LIU Chongxin, LIU Ling, et al. Chaotic dynamics in a neural network under electromagnetic radiation[J]. Nonlinear Dynamics, 2018, 91(3): 1541–1554. doi: 10.1007/s11071-017-3963-6
    LIN Hairong and WANG Chunhua. Influences of electromagnetic radiation distribution on chaotic dynamics of a neural network[J]. Applied Mathematics and Computation, 2020, 369: 124840. doi: 10.1016/j.amc.2019.124840
    BAO Han, HU Aihuang, LIU Wenbo, et al. Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(2): 502–511. doi: 10.1109/TNNLS.2019.2905137
    XU Fei, ZHANG Jiqian, JIN Meng, et al. Chimera states and synchronization behavior in multilayer memristive neural networks[J]. Nonlinear Dynamics, 2018, 94(2): 775–783. doi: 10.1007/s11071-018-4393-9
    BAO Han, LIU Wenbo, and HU Aihuang. Coexisting multiple firing patterns in two adjacent neurons coupled by memristive electromagnetic induction[J]. Nonlinear Dynamics, 2019, 95(1): 43–56. doi: 10.1007/s11071-018-4549-7
    CHEN Chengjie, CHEN Jingqi, BAO Han, et al. Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons[J]. Nonlinear Dynamics, 2019, 95(4): 3385–3399. doi: 10.1007/s11071-019-04762-8
    CHEN Chengjie, BAO Han, CHEN Mo, et al. Non-ideal memristor synapse-coupled bi-neuron Hopfield neural network: Numerical simulations and breadboard experiments[J]. AEU-International Journal of Electronics and Communications, 2019, 111: 152894. doi: 10.1016/j.aeue.2019.152894
    BREAKSPEAR M. Dynamic models of large-scale brain activity[J]. Nature Neuroscience, 2017, 20(3): 340–352. doi: 10.1038/nn.4497
    WANG Guangyi, YUAN Fang, CHEN Guanrong, et al. Coexisting multiple attractors and riddled basins of a memristive system[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2018, 28(1): 013125. doi: 10.1063/1.5004001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (3165) PDF downloads(192) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return