Advanced Search
Volume 42 Issue 8
Aug.  2020
Turn off MathJax
Article Contents
Hequn XIAN, Yi ZHANG, Ding WANG, Zengpeng LI, Yunlong HE. CSNN: Password Set Security Evaluation Method Based on Chinese Syllables and Neural Network[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1862-1871. doi: 10.11999/JEIT190856
Citation: Hequn XIAN, Yi ZHANG, Ding WANG, Zengpeng LI, Yunlong HE. CSNN: Password Set Security Evaluation Method Based on Chinese Syllables and Neural Network[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1862-1871. doi: 10.11999/JEIT190856

CSNN: Password Set Security Evaluation Method Based on Chinese Syllables and Neural Network

doi: 10.11999/JEIT190856
Funds:  The National Natural Science Foundation of China (61802214), The Shandong Provincial Natural Science Foundation (ZR2019MF058)
  • Received Date: 2019-11-01
  • Rev Recd Date: 2020-02-25
  • Available Online: 2020-04-09
  • Publish Date: 2020-08-18
  • Password guessing attack is the most direct way to break information systems. Using appropriate methods to generate password dictionaries can accurately evaluate the security of password sets. This paper proposes a new approach to the Chinese password set security evaluation that is named Chinese Syllables and Neural Network-based password generation (CSNN). In CSNN, each chinese syllable is treated as an integral element, and the spelling rules of chinese syllable can be used to parse and process the passwords. The processed passwords are then trained in the neural network model of Long Short-Term Memory (LSTM), which is used to generate password dictionaries (guessing sets). To evaluate the performance of CSNN, the hit rates of guessing sets generated by CSNN is compared with the two classical approaches (i.e., Probability Context-Free Grammar (PCFG) and 5th-order Markov chain model). In the hit rate experiment, guessing sets of different scales are selected; the results show that the comprehensive performance of guessing sets generated by CSNN is better than PCFG and 5th-order markov chain model. Compared with PCFG, different scales of CSNN guessing sets can improve 5.1%~7.4% in hit rate on some test sets by 107 guesses (average 6.3%); Compared with 5th-order markov chain model, the CSNN guessing sets increased its hit rate by 2.8% to 12% (with an average of 8.2%) by 8×105 guesses.
  • loading
  • 王勇, 吴金君, 田增山, 等. 基于FMCW雷达的多维参数手势识别算法[J]. 电子与信息学报, 2019, 41(4): 822–829. doi: 10.11999/JEIT180485

    WANG Yong, WU Jinjun, TIAN Zengshan, et al. Gesture recognition with multi-dimensional parameter using FMCW radar[J]. Journal of Electronics &Information Technology, 2019, 41(4): 822–829. doi: 10.11999/JEIT180485
    马杰, 张绣丹, 杨楠, 等. 融合密集卷积与空间转换网络的手势识别方法[J]. 电子与信息学报, 2018, 40(4): 951–956. doi: 10.11999/JEIT170627

    MA Jie, ZHANG Xiudan, YANG Nan, et al. Gesture recognition method combining dense convolutional with spatial transformer networks[J]. Journal of Electronics &Information Technology, 2018, 40(4): 951–956. doi: 10.11999/JEIT170627
    王平, 汪定, 黄欣沂. 口令安全研究进展[J]. 计算机研究与发展, 2016, 53(10): 2173–2188. doi: 10.7544/issn1000-1239.2016.20160483

    WANG Ping, WANG Ding, and HUANG Xinyi. Advances in password security[J]. Journal of Computer Research and Development, 2016, 53(10): 2173–2188. doi: 10.7544/issn1000-1239.2016.20160483
    MORRIS R and THOMPSON K. Password security: A case history[J]. Communications of the ACM, 1979, 22(11): 594–597. doi: 10.1145/359168.359172
    WU T. A real-world analysis of Kerberos password security[C]. 1999 Network and Distributed System Security Symposium, San Diego, USA, 1999: 13–22.
    KLEIN D V. Foiling the cracker: A survey of, and improvements to, password security[J]. Programming and Computer Software, 1992, 17(3): 5–14.
    HOCHREITER S and SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735–1780. doi: 10.1162/neco.1997.9.8.1735
    LEVY O, LEE K, FITZGERALD N, et al. Long Short-term memory as a dynamically computed element-wise weighted sum[J]. 2018, arXiv: 1805.03716.
    MELICHER W, UR B, SEGRETI S M, et al. Fast, lean, and accurate: Modeling password guessability using neural networks[C]. The 25th USENIX Security Symposium, Austin, USA, 2016: 175–191.
    WEIR M, AGGARWAL S, DE MEDEIROS B, et al. Password cracking using probabilistic context-free grammars[C]. The 30th IEEE Symposium on Security and Privacy, Berkeley, USA, 2009: 391–405. doi: 10.1109/SP.2009.8.
    NARAYANAN A and SHMATIKOV V. Fast dictionary attacks on passwords using time-space tradeoff[C]. The 12th ACM Conference on Computer and Communications Security, New York, USA, 2005: 364–372. doi: 10.1145/1102120.1102168.
    MA J, YANG Weining, LUO Min, et al. A study of probabilistic password models[C]. 2014 IEEE Symposium on Security and Privacy, San Jose, USA, 2014: 689–704. doi: 10.1109/SP.2014.50.
    WANG Ding, ZHANG Zijian, WANG Ping, et al. Targeted online password guessing: An underestimated threat[C]. 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, The Republic of Austria, 2016: 1242–1254. doi: 10.1145/2976749.2978339.
    HITAJ B, GASTI P, ATENIESE G, et al. PassGAN: A deep learning approach for password guessing[C]. The 17th International Conference on Applied Cryptography and Network Security, Bogota, Colombia, 2019: 217–237. doi: 10.1007/978-3-030-21568-2_11.
    PASQUINI D, GANGWAL A, ATENIESE G, et al. Improving password guessing via representation learning[J]. 2019, arXiv: 1910.04232.
    LIU Yunyu, XIA Zhiyang, YI Ping, et al. GENPass: A general deep learning model for password guessing with PCFG rules and adversarial generation[C]. 2018 IEEE International Conference on Communications, Kansas City, USA, 2018: 1–6. doi: 10.1109/ICC.2018.8422243.
    XIA Zhiyang, YI Ping, LIU Yunyu, et al. GENPass: A multi-source deep learning model for password guessing[J]. IEEE Transactions on Multimedia, 2020, 22(5): 1323–1332. doi: 10.1109/tmm.2019.2940877
    WANG Ding, WANG Ping, HE Debiao, et al. Birthday, name and bifacial-security: Understanding passwords of Chinese web users[C]. The 28th USENIX Security Symposium, Santa Clara, USA, 2019: 1537–1555.
    罗敏, 张阳. 一种基于姓名首字母简写结构的口令破解方法[J]. 计算机工程, 2017, 43(1): 188–195, 200. doi: 10.3969/j.issn.1000-3428.2017.01.033

    LUO Min and ZHANG Yang. A password cracking method based on name initials shorthand structure[J]. Computer Engineering, 2017, 43(1): 188–195, 200. doi: 10.3969/j.issn.1000-3428.2017.01.033
    LI Yue, WANG Haining, and SUN Kun. Personal information in passwords and its security implications[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(10): 2320–2333. doi: 10.1109/TIFS.2017.2705627
    汪定. 口令安全关键问题研究[D]. [博士论文], 北京大学, 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(5)

    Article Metrics

    Article views (3931) PDF downloads(103) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return