Advanced Search
Volume 42 Issue 4
Jun.  2020
Turn off MathJax
Article Contents
Zhijun LI, Siyuan FANG, Chengyi ZHOU. Bursting Oscillations and Bifurcation Mechanism in Memristor-based Shimizu–Morioka System with Multi-frequency Slow Excitations[J]. Journal of Electronics & Information Technology, 2020, 42(4): 878-887. doi: 10.11999/JEIT190855
Citation: Zhijun LI, Siyuan FANG, Chengyi ZHOU. Bursting Oscillations and Bifurcation Mechanism in Memristor-based Shimizu–Morioka System with Multi-frequency Slow Excitations[J]. Journal of Electronics & Information Technology, 2020, 42(4): 878-887. doi: 10.11999/JEIT190855

Bursting Oscillations and Bifurcation Mechanism in Memristor-based Shimizu–Morioka System with Multi-frequency Slow Excitations

doi: 10.11999/JEIT190855
Funds:  The National Natural Science Foundation of China (61471310), The National Key R&D Program of China (2018AAA0103300), The Natural Science Foundation of Hunan Province (2015JJ2142)
  • Received Date: 2019-11-01
  • Rev Recd Date: 2019-12-27
  • Available Online: 2020-01-07
  • Publish Date: 2020-06-04
  • In order to study the bursting oscillations and its formation mechanism of memristor-based system, a multi-timescale memristor-based S-M system is established by introducing a memristor device and two slowly changing periodic excitations into the Shimizu-Morioka (S-M) system. Firstly, the bursting behavior and bifurcation mechanism of S-M system under single excitation are studied, and a symmetric bursting pattern of “sub-Hopf/sub-Hopf” is obtained. Then the multi-frequency excitation system is transformed into single frequency excitation system by using De Moivre formula, and the influence of additional excitation amplitude and frequency on “sub Hopf / sub Hopf” bursting mode is analyzed by using the fast-slow analysis method. As a result, two new bursting patterns named as twisted “sub-Hopf/sub-Hopf” bursting and nested “sub-Hopf/sub-Hopf” are found under different amplitudes of the additional excitation. The corresponding bursting mechanisms are analyzed with time history diagram, bifurcation diagram and transformation phase diagram. Finally, Multisim simulation results, which are in good agreement with the numerical simulation results, are provided to verify the validity of the study.
  • loading
  • ZHANG Zhengdi, LI Yanyan, and BI Qinsheng. Routes to bursting in a periodically driven oscillator[J]. Physics Letters A, 2013, 377(13): 975–980. doi: 10.1016/j.physleta.2013.02.022
    LIEPELT S, FREUND J A, SCHIMANSKY-GEIER L, et al. Information processing in noisy burster models of sensory neurons[J]. Journal of Theoretical Biology, 2005, 237(1): 30–40. doi: 10.1016/j.jtbi.2005.03.029
    BRØNS M and KAASEN R. Canards and mixed-mode oscillations in a forest pest model[J]. Theoretical Population Biology, 2010, 77(4): 238–242. doi: 10.1016/j.tpb.2010.02.003
    PROSKURKIN I S and VANAG V K. New type of excitatory pulse coupling of chemical oscillators via inhibitor[J]. Physical Chemistry Chemical Physics, 2015, 17(27): 17906–17913. doi: 10.1039/C5CP02098K
    HAN Xiujing, YU Yue, and ZHANG Chun. A novel route to chaotic bursting in the parametrically driven Lorenz system[J]. Nonlinear Dynamics, 2017, 88(4): 2889–2897. doi: 10.1007/s11071-017-3418-0
    WU Huagan, BAO Bocheng, LIU Zhong, et al. Chaotic and periodic bursting phenomena in a memristive Wien-bridge oscillator[J]. Nonlinear Dynamics, 2016, 83(1/2): 893–903.
    IZHIKEVICH E M. Neural excitability, spiking and bursting[J]. International Journal of Bifurcation and Chaos, 2000, 10(6): 1171–1266. doi: 10.1142/S0218127400000840
    IZHIKEVICH E M, DESAI N S, WALCOTT E C, et al. Bursts as a unit of neural information: Selective communication via resonance[J]. Trends in Neurosciences, 2003, 26(3): 161–167. doi: 10.1016/S0166-2236(03)00034-1
    INNOCENTI G, MORELLI A, GENESIO R, et al. Dynamical phases of the Hindmarsh-Rose neuronal model: Studies of the transition from bursting to spiking chaos[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2007, 17(4): 043128. doi: 10.1063/1.2818153
    BAO Bocheng, YANG Qinfeng, ZHU Lei, et al. Chaotic bursting dynamics and coexisting multistable firing patterns in 3D autonomous Morris-Lecar model and microcontroller-based validations[J]. International Journal of Bifurcation and Chaos, 2019, 29(10): 1950134. doi: 10.1142/S0218127419501347
    LI Xianghong and HOU Jingyu. Bursting phenomenon in a piecewise mechanical system with parameter perturbation in stiffness[J]. International Journal of Non-Linear Mechanics, 2016, 81: 165–176. doi: 10.1016/j.ijnonlinmec.2016.01.014
    RINZEL J. Discussion: Electrical excitability of cells, theory and experiment: Review of the Hodgkin-Huxley foundation and an update[J]. Bulletin of Mathematical Biology, 1990, 52(1/2): 5–23.
    MA Xindong, and CAO Shuqian. Pitchfork-bifurcation-delay-induced bursting patterns with complex structures in a parametrically driven Jerk circuit system[J]. Journal of Physics A: Mathematical and Theoretical, 2018, 51(33): 335101. doi: 10.1088/1751-8121/aace0d
    TEKA W, TABAK J, and BERTRAM R. The relationship between two fast/slow analysis techniques for bursting oscillations[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2012, 22(4): 043117. doi: 10.1063/1.4766943
    YU Yue, ZHANG Zhengdi, and HAN Xiujing. Periodic or chaotic bursting dynamics via delayed pitchfork bifurcation in a slow-varying controlled system[J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 56: 380–391. doi: 10.1016/j.cnsns.2017.08.019
    ZHANG Hao, CHEN Diyi, XU Beibei, et al. The slow-fast dynamical behaviors of a hydro-turbine governing system under periodic excitations[J]. Nonlinear Dynamics, 2017, 87(4): 2519–2528. doi: 10.1007/s11071-016-3208-0
    HAN Xiujing, ZHANG Yi, BI Qinsheng, et al. Two novel bursting patterns in the Duffing system with multiple-frequency slow parametric excitations[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2018, 28(4): 043111. doi: 10.1063/1.5012519
    HAN Xiujing, YU Yue, ZHANG Chun, et al. Turnover of hysteresis determines novel bursting in Duffing system with multiple-frequency external forcings[J]. International Journal of Non-Linear Mechanics, 2017, 89: 69–74. doi: 10.1016/j.ijnonlinmec.2016.11.008
    HAN Xiujing, BI Qinsheng, JI Peng, et al. Fast-slow analysis for parametrically and externally excited systems with two slow rationally related excitation frequencies[J]. Physical Review E, 2015, 92(1): 012911. doi: 10.1103/PhysRevE.92.012911
    WEI Mengke, HAN Xiujing, ZHANG Xiaofang, et al. Bursting oscillations induced by bistable pulse-shaped explosion in a nonlinear oscillator with multiple-frequency slow excitations[J]. Nonlinear Dynamics, 2020, 99(2): 1301–1312. doi: 10.1007/s11071-019-05355-1
    BAO Bocheng, LIU Zhong, and XU Jianping. Transient chaos in smooth memristor oscillator[J]. Chinese Physics B, 2010, 19(3): 030510. doi: 10.1088/1674-1056/19/3/030510
    李志军, 曾以成. 基于文氏振荡器的忆阻混沌电路[J]. 电子与信息学报, 2014, 36(1): 88–93.

    LI Zhijun and ZENG Yicheng. A memristor chaotic circuit based on Wien-bridge oscillator[J]. Journal of Electronics &Information Technology, 2014, 36(1): 88–93.
    BAO Bocheng, WU Pingye, BAO Han, et al. Chaotic bursting in memristive diode bridge-coupled Sallen-key lowpass filter[J]. Electronics Letters, 2017, 53(16): 1104–1105. doi: 10.1049/el.2017.1647
    CHEN Mo, QI Jianwei, XU Quan, et al. Quasi-period, periodic bursting and bifurcations in memristor-based FitzHugh-Nagumo circuit[J]. AEU-International Journal of Electronics and Communications, 2019, 110: 152840.
    BAO Han, HU Aihuang, LIU Wenbo, et al. Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(2): 502–511. doi: 10.1109/TNNLS.2019.2905137
    WU Huagan, YE Yi, CHEN Mo, et al. Extremely slow passages in low-pass filter-based memristive oscillator[J]. Nonlinear Dynamics, 2019, 97(4): 2339–2353. doi: 10.1007/s11071-019-05131-1
    SHIMIZU T and MORIOKA N. On the bifurcation of a symmetric limit cycle to an asymmetric one in a simple model[J]. Physics Letters A, 1980, 76(3/4): 201–204.
    FENG Wei, HE Yigang, LI Chunlai, et al. Dynamical behavior of a 3D jerk system with a generalized Memristive device[J]. Complexity, 2018: 5620956.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (2074) PDF downloads(112) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return