Citation: | Zhuoran ZHANG, Huang ZHANG, Fangguo ZHANG. Survey on Applications of List Decoding to Cryptography[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1049-1060. doi: 10.11999/JEIT190851 |
BERLEKAMP E R, MCELIECE R J, and VAN TILBORG H C A. On the inherent intractability of certain coding problems (Corresp.)[J]. IEEE Transactions on Information Theory, 1978, 24(3): 384–386. doi: 10.1109/TIT.1978.1055873
|
MCELIECE R J. A public-key cryptosystem based on algebraic coding theory[R]. DSN Progress Report 42–44, 1978: 114–116.
|
ELIAS P. List decoding for noisy channels[R]. Technical Report 335, 1957: 94–104.
|
GOLDREICH O and LEVIN L A. A hard-core predicate for all one-way functions[C]. The 21st Annual ACM Symposium on Theory of Computing, Seattle, USA, 1989: 25–32. doi: 10.1145/73007.73010.
|
SUDAN M. Decoding of Reed Solomon codes beyond the error-correction bound[J]. Journal of Complexity, 1997, 13(1): 180–193. doi: 10.1006/jcom.1997.0439
|
GURUSWAMI V and SUDAN M. Improved decoding of Reed-Solomon and algebraic-geometry codes[J]. IEEE Transactions on Information Theory, 1999, 45(6): 1757–1767. doi: 10.1109/18.782097
|
GURUSWAMI V and SUDAN M. On representations of algebraic-geometric codes for list decoding[C]. The 8th Annual European Symposium, Saarbrücken, Germany, 2000: 244–255. doi: 10.1007/3-540-45253-2_23.
|
GOPALAN P, KLIVANS A R, and ZUCKERMAN D. List-decoding Reed-Muller codes over small fields[C]. The 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, 2008: 265–274. doi: 10.1145/1374376.1374417.
|
SUDAN M. List decoding: Algorithms and applications[C]. International Conference IFIP TCS 2000 Sendai, Japan, 2000: 25–41. doi: 10.1007/3-540-44929-9_3.
|
BLUM M and MICALI S. How to generate cryptographically strong sequences of pseudo random bits[C]. The 23rd Annual Symposium on Foundations of Computer Science, Chicago, USA, 1982: 112–117. doi: 10.1109/SFCS.1982.72.
|
AKAVIA A, GOLDWASSER S, and SAFRA S. Proving hard-core predicates using list decoding[C]. The 44th Annual IEEE Symposium on Foundations of Computer Science, Cambridge, USA, 2003: 146–157. doi: 10.1109/SFCS.2003.1238189.
|
王明强, 庄金成. 基于列表译码方法在查询访问模型下含错学习问题的分析[J]. 电子与信息学报, 2020, 42(2): 322–326. doi: 10.11999/JEIT190624
WANG Mingqiang and ZHUANG Jincheng. Analysis of learning with errors in query access model: A list decoding approach[J]. Journal of Electronics &Information Technology, 2020, 42(2): 322–326. doi: 10.11999/JEIT190624
|
MORILLO P and RÀFOLS C. The security of all bits using list decoding[C]. The 12th International Conference on Practice and Theory in Public Key Cryptography, Irvine, USA, 2009: 15–33.
|
谢小容, 吕克伟, 王鲲鹏. ax + b mod p比特安全的列表译码证明[J]. 系统科学与数学, 2012, 32(11): 1366–1376.
XIE Xiaorong, LÜ Kewei, and WANG Kunpeng. Proving the security of all bits of ax + b mod p using list decoding[J]. Journal of Systems Science and Mathematical Sciences, 2012, 32(11): 1366–1376.
|
DUC A and JETCHEV D. Hardness of computing individual bits for one-way functions on elliptic curves[C]. The 32nd Annual Cryptology Conference, Santa Barbara, USA, 2012: 832–849. doi: 10.1007/978-3-642-32009-5_48.
|
FAZIO N, GENNARO R, PERERA I M, et al. Hard-core predicates for a Diffie-Hellman problem over finite fields[C]. The 33rd Annual Cryptology Conference, Santa Barbara, USA, 2013: 148–165. doi: 10.1007/978-3-642-40084-1_9.
|
WANG Mingqiang, ZHAN Tao, and ZHANG Haibin. Bit security of the CDH problems over finite fields[C]. The 22nd International Conference on Selected Areas in Cryptography, Sackville, 2015: 441–461.
|
KAWACHI A and YAMAKAMI T. Quantum hardcore functions by complexity-theoretical quantum list decoding[C]. The 33rd International Colloquium on Automata, Languages and Programming, Venice, 2006: 216–227.
|
BONEH D and FRANKLIN M. An efficient public key traitor tracing scheme[C]. The 19th Annual International Cryptology Conference Santa Barbara, Santa Barbara, USA, 1999: 338–353. doi: 10.1007/3-540-48405-1_22.
|
FERNANDEZ M and SORIANO M. Identification of traitors in algebraic-geometric traceability codes[J]. IEEE Transactions on Signal Processing, 2004, 52(10): 3073–3077. doi: 10.1109/TSP.2004.833858
|
FAZIO N, NICOLOSI A, and PHAN D H. Traitor tracing with optimal transmission rate[C]. The 10th International Conference on Information Security, Valparaíso, Chile, 2007: 71–88. doi: 10.1007/978-3-540-75496-1_5.
|
PHAN D H. Traitor tracing for stateful pirate decoders with constant ciphertext rate[C]. The 1st International Conference on Cryptology in Vietnam, Hanoi, Vietnam, 2006: 354–365. doi: 10.1007/11958239_24.
|
SIRVENT T. Traitor tracing scheme with constant ciphertext rate against powerful pirates[EB/OL]. https://eprint.iacr.org/2006/383, 2019.
|
SILVERBERG A, STADDON J, and WALKER J L. Efficient traitor tracing algorithms using list decoding[C]. The 7th International Conference on the Theory and Application of Cryptology and Information Security Gold Coast, Gold Coast, Australia, 2001: 175–192. doi: 10.1007/3-540-45682-1_11.
|
SILVERBERG A, STADDON J, and WALKER J L. Applications of list decoding to tracing traitors[J]. IEEE Transactions on Information Theory, 2003, 49(5): 1312–1318. doi: 10.1109/TIT.2003.810630
|
BARBIER M and BARRETO P S L M. Key reduction of McEliece's cryptosystem using list decoding[C]. 2011 IEEE International Symposium on Information Theory Proceedings, St. Petersburg, Russia, 2011: 2681–2685. doi: 10.1109/ISIT.2011.6034058.
|
KIAYIAS A and YUNG M. Secure games with polynomial expressions[C]. The 28th International Colloquium on Automata, Languages, and Programming, Crete, Greece, 2001: 939–950. doi: 10.1007/3-540-48224-5_76.
|
KIAYIAS A and YUNG M. Polynomial reconstruction based cryptography[C]. The 8th Annual International Workshop on Selected Areas in Cryptography, Toronto, Canada, 2001: 129–133. doi: 10.1007/3-540-45537-X_10.
|
KIAYIAS A and YUNG M. Cryptanalyzing the polynomial-reconstruction based public-key system under optimal parameter choice[C]. The 10th International Conference on the Theory and Application of Cryptology and Information Security, Jeju Island, Korea, 2004: 401–416. doi: 10.1007/978-3-540-30539-2_28.
|
KIAYIAS A and YUNG M. Cryptographic hardness based on the decoding of Reed-Solomon codes[J]. IEEE Transactions on Information Theory, 2008, 54(6): 2752–2769. doi: 10.1109/TIT.2008.921876
|
CHENG Qi and WAN Daqing. On the list and bounded distance decodibility of Reed-Solomon codes[C]. The 45th Annual IEEE Symposium on Foundations of Computer Science, Rome, Italy, 2004: 335–341. doi: 10.1109/FOCS.2004.46.
|
CHENG Qi. On the bounded sum-of-digits discrete logarithm problem in finite fields[C]. The 24th Annual International Cryptology Conference, Santa Barbara, USA, 1999: 201–212. doi: 10.1007/978-3-540-28628-8_12.
|
WANG Pengwei and SAFAVI-NAINI R. Interactive message transmission over adversarial wiretap channel Ⅱ[C]. IEEE INFOCOM 2017-IEEE Conference on Computer Communications, Atlanta, USA, 2017: 1–9. doi: 10.1109/INFOCOM.2017.8057120.
|
ZHANG Fangguo and LIU Shengli. Solving ECDLP via list decoding[EB/OL]. https://eprint.iacr.org/2018/795.pdf, 2019.
|
MÁRQUEZ-CORBELLA I and TILLICH J P. Using Reed-Solomon codes in the (U|U+V) construction and an application to cryptography[C]. 2016 IEEE International Symposium on Information Theory, Barcelona, Spain, 2016: 930–934. doi: 10.1109/ISIT.2016.7541435.
|
ZHANG Fangguo and ZHANG Zhuoran. ECC2: Error correcting code and elliptic curve based cryptosystem[C]. The 11th International Symposium Cyberspace Safety and Security, Guangzhou, China, 2019: 214–229.
|
ZHANG F, ZHANG Z, and GUAN P. ECC2: Error correcting code and elliptic curve based cryptosystem (full version)[J]. Submit to Information Science.
|
GOPPA V D. Codes on algebraic curves[J]. Soviet Math Dokl, 1981, 24: 170–172.
|
JANWA H and MORENO O. McEliece public key cryptosystems using algebraic-geometric codes[J]. Designs, Codes and Cryptography, 1996, 8(3): 293–307. doi: 10.1023/A:1027351723034
|
HØHOLDT T, VAN LINT J H, and PELLIKAAN R. Algebraic Geometry Codes[M]. LUISA B. Handbook of Coding Theory. Amsterdam: Elsevier Science Inc., 1998: 871–961.
|
SHOKROLLAHI M A and WASSERMAN H. List decoding of algebraic-geometric codes[J]. IEEE Transactions on Information Theory, 1999, 45(2): 432–437. doi: 10.1109/18.748993
|
WU Xinwen and SIEGEL P H. Efficient root-finding algorithm with application to list decoding of algebraic-geometric codes[J]. IEEE Transactions on Information Theory, 2001, 47(6): 2579–2587. doi: 10.1109/18.945273
|
TRIFONOV P. On the root finding step in list decoding of folded Reed-Solomon codes[EB/OL]. http://arxiv.org/abs/1103.1958v3, 2019.
|
MURALIDHARA V N and SEN S. Improvements on the Johnson bound for Reed-Solomon codes[J]. Discrete Applied Mathematics, 2009, 157(4): 812–818. doi: 10.1016/j.dam.2008.06.014
|
GURUSWAMI V and XING Chaoping. List decoding Reed-Solomon, algebraic-geometric, and Gabidulin subcodes up to the singleton bound[C]. The 45th Annual ACM Symposium on Theory of Computing, Palo Alto, USA, 2013: 843–852. doi: 10.1145/2488608.2488715.
|
NAOR M and PINKAS B. Oblivious transfer and polynomial evaluation[C]. The 21st Annual ACM Symposium on Theory of Computing, Atlanta, USA, 1999: 245–254. doi: 10.1145/301250.301312.
|
BLEICHENBACHER D, KIAYIAS A, and YUNG M. Decoding of interleaved Reed Solomon codes over noisy data[C]. The 30th International Colloquium on Automata, Languages, and Programming, Eindhoven, The Netherlands, 2003: 97–108. doi: 10.1007/3-540-45061-0_9.
|
AUGOT D and FINIASZ M. A public key encryption scheme based on the polynomial reconstruction problem[C]. International Conference on the Theory and Applications of Cryptographic Techniques, Warsaw, Poland, 2003: 229–240. doi: 10.1007/3-540-39200-9_14.
|
CORON J S. Cryptanalysis of a public-key encryption scheme based on the polynomial reconstruction problem[C]. The 7th International Workshop on Theory and Practice in Public Key Cryptography, Singapore, 2004: 14–27. doi: 10.1007/978-3-540-24632-9_2.
|
JUSTESEN J and HOHOLDT T. Bounds on list decoding of MDS codes[J]. IEEE Transactions on Information Theory, 2001, 47(4): 1604–1609. doi: 10.1109/18.923744
|
NIEBUHR R, CAYREL P L, BULYGIN S, et al. On lower bounds for information set decoding over Fq[C]. The 2nd International Conference on Symbolic Computation and Cryptography - SCC 2010, Egham, UK, 2010: 143–157.
|
FAUGÈRE J C, OTMANI A, PERRET L, et al. Algebraic cryptanalysis of mcEliece variants with compact keys[C]. The 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques, French Riviera, France, 2010: 279–298. doi: 10.1007/978-3-642-13190-5_14.
|
OZAROW L H and WYNER A D. Wire-tap channel Ⅱ[C]. EUROCRYPT 1984 A Workshop on the Theory and Application of Cryptographic Techniques, Paris, France, 1984: 33–50. doi: 10.1007/3-540-39757-4_5.
|
TAL I and VARDY A. List decoding of polar codes[J]. IEEE Transactions on Information Theory, 2015, 61(5): 2212–2216. doi: 10.1109/TIT.2015.2410251
|
王琼, 罗亚洁, 李思舫. 基于分段循环冗余校验的极化码自适应连续取消列表译码算法[J]. 电子与信息学报, 2019, 41(7): 1572–1578. doi: 10.11999/JEIT180716
WANG Qiong, LUO Yajie, and LI Sifang. Polar adaptive successive cancellation list decoding based on segmentation cyclic redundancy check[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1572–1578. doi: 10.11999/JEIT180716
|
王美洁, 郭锐. 极化码低时延列表连续删除译码算法[J]. 通信技术, 2016, 49(3): 270–273. doi: 10.3969/j.issn.1002-0802.2016.03.004
WANG Meijie and GUO Rui. Reduced-latency successive cancellation list decoding for polar code[J]. Communications Technology, 2016, 49(3): 270–273. doi: 10.3969/j.issn.1002-0802.2016.03.004
|
HOOSHMAND R, SHOOSHTARI M K, EGHLIDO T, et al. Reducing the key length of McEliece cryptosystem using polar codes[C]. The 11th International ISC Conference on Information Security and Cryptology, Tehran, Iran, 2014: 104–108. doi: 10.1109/ISCISC.2014.6994031.
|
SHRESTHA S R and KIM Y S. New McEliece cryptosystem based on polar codes as a candidate for post-quantum cryptography[C]. The 14th International Symposium on Communications and Information Technologies, Incheon, South Korea, 2014: 368–372. doi: 10.1109/ISCIT.2014.7011934.
|
BARDET M, CHAULET J, DRAGOI V, et al. Cryptanalysis of the McEliece public key cryptosystem based on polar codes[C]. The 7th International Workshop, Fukuoka, Japan, 2016: 118–143. doi: 10.1007/978-3-319-29360-8_9.
|
DRIENCOURT Y and MICHON J F. Elliptic codes over fields of characteristics 2[J]. Journal of Pure and Applied Algebra, 1987, 45(1): 15–39. doi: 10.1016/0022-4049(87)90081-8
|
CHENG Qi. Hard problems of algebraic geometry codes[J]. IEEE Transactions on Information Theory, 2008, 54(1): 402–406. doi: 10.1109/TIT.2007.911213
|
SIDELNIKOV V M and SHESTAKOV S O. On insecurity of cryptosystems based on generalized Reed-Solomon codes[J]. Discrete Mathematics and Applications, 1992, 2(4): 439–444.
|
MINDER L. Cryptography based on error correcting codes[D]. [Ph.D. dissertation], EPFL, 2007.
|
FAURE C and MINDER L. Cryptanalysis of the McEliece cryptosystem over hyperelliptic codes[C]. The 11th international workshop on Algebraic and Combinatorial Coding Theory, Pamporovo, Bulgaria, 2008: 99–107.
|
COUVREUR A, MÁRQUEZ-CORBELLA I, and PELLIKAAN R. A polynomial time attack against algebraic geometry code based public key cryptosystems[C]. 2014 IEEE International Symposium on Information Theory, Honolulu, USA, 2014: 1446–1450. doi: 10.1109/ISIT.2014.6875072.
|
COUVREUR A, MÁRQUEZ-CORBELLA I, and PELLIKAAN R. Cryptanalysis of McEliece cryptosystem based on algebraic geometry codes and their subcodes[J]. IEEE Transactions on Information Theory, 2017, 63(8): 5404–5418. doi: 10.1109/TIT.2017.2712636
|
PELLIKAAN R. On decoding by error location and dependent sets of error positions[J]. Discrete Mathematics, 1992, 106-107: 369–381. doi: 10.1016/0012-365X(92)90567-Y
|
PELLIKAAN R. On the existence of error-correcting pairs[J]. Journal of Statistical Planning and Inference, 1996, 51(2): 229–242. doi: 10.1016/0378-3758(95)00088-7
|