Advanced Search
Volume 42 Issue 6
Jun.  2020
Turn off MathJax
Article Contents
Ying NIU, Xuncai ZHANG. Image Encryption Algorithm of Based on Variable Step Length Josephus Traversing and DNA Dynamic Coding[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1383-1391. doi: 10.11999/JEIT190849
Citation: Ying NIU, Xuncai ZHANG. Image Encryption Algorithm of Based on Variable Step Length Josephus Traversing and DNA Dynamic Coding[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1383-1391. doi: 10.11999/JEIT190849

Image Encryption Algorithm of Based on Variable Step Length Josephus Traversing and DNA Dynamic Coding

doi: 10.11999/JEIT190849
Funds:  The National Natural Science Foundation of China (61602424, U1804262), The Key Research and Development Program of Henan Province (202102210177, 192102210134)
  • Received Date: 2019-10-31
  • Rev Recd Date: 2020-05-03
  • Available Online: 2020-05-19
  • Publish Date: 2020-06-22
  • The security of digital image transmission and storage has become a hotspot of information security research. An image encryption algorithm based on variable step length Josephus traversing and DNA dynamic coding is proposed. Firstly, through the thorough analysis of Joseph traversing, the random sequence generated by chaotic map is taken as the variable step length of Joseph traversing, and the pixel position is permutated. Secondly, according to the random sequence generated by chaotic map, the DNA coding rules of pixel points transformation are selected, and the image is dynamically encoded into DNA strand, and the DNA sequence is calculated based on the principle of complementary base pairing. Because the DNA coding rules of the pixels transformation are dynamic, the hidden danger caused by the lack of DNA coding rules is well solved, and the security of the algorithm is improved. Finally, the permutation and diffusion characteristics of the algorithm are further enhanced by ciphertext feedback and chaotic system iteration. Experiment and security analysis results show that the algorithm not only has large key space and strong sensitivity to keys, but also can effectively resist attacks such as statistical analysis and brutal analysis.
  • loading
  • BEHNIA S, AKHSHANI A, MAHMODI H, et al. A novel algorithm for image encryption based on mixture of chaotic maps[J]. Chaos, Solitons & Fractals, 2008, 35(2): 408–419. doi: 10.1016/j.chaos.2006.05.011
    SHANNON C E. Communication theory of secrecy systems[J]. The Bell System Technical Journal, 1949, 28(4): 656–715. doi: 10.1002/j.1538-7305.1949.tb00928.x
    ÖZKAYNAK F. Brief review on application of nonlinear dynamics in image encryption[J]. Nonlinear Dynamics, 2018, 92(2): 305–313. doi: 10.1007/s11071-018-4056-x
    CHEN G R, MAO Y B, and CHUI C K. A symmetric image encryption scheme based on 3D chaotic cat maps[J]. Chaos, Solitons & Fractals, 2004, 21(3): 749–761. doi: 10.1016/j.chaos.2003.12.022
    WANG Xinyuan, WANG Xiaojuan, ZHAO Jianfeng, et al. Chaotic encryption algorithm based on alternant of stream cipher and block cipher[J]. Nonlinear Dynamics, 2011, 63(4): 587–597. doi: 10.1007/s11071-010-9821-4
    LEIER A, RICHTER C, BANZHAF W, et al. Cryptography with DNA binary strands[J]. Biosystems, 2000, 57(1): 13–22. doi: 10.1016/S0303-2647(00)00083-6
    SHIMANOVSKY B, FENG J, and POTKONJAK M. Hiding Data in DNA[M]. PETITCOLAS F A P. Information Hiding. Berlin: Springer, 2008: 373–386. doi: 10.1007/3-540-36415-3_24.
    BONEH D, DUNWORTH C, and LIPTON R J. Breaking DES Using a Molecular Computer[M]. LIPTON R J and BAUM E B. DNA Based Computers I. Providence: American Mathematical Society, 1996: 37–65.
    GEHANI A, LABEAN T, and REIF J. DNA-based Cryptography[M]. JONOSKA N, PĂUN G, and ROZENBERG G. Aspects of Molecular Computing. Berlin: Springer, 2003: 233–249. doi: 10.1007/978-3-540-24635-0_12.
    CLELLAND C T, RISCA V, BANCROFT C. Hiding messages in DNA microdots[J]. Nature, 1999, 399(6736): 533–534. doi: 10.1038/21092
    LE GOFF G C, BLUM L J, and MARQUETTE C A. Shrinking Hydrogel-DNA spots generates 3D microdots arrays[J]. Macromolecular Bioscience, 2013, 13(2): 227–233. doi: 10.1002/mabi.201200370
    WANG Yanfeng, HAN Qinqin, CUI Guangzhao, et al. Hiding messages based on DNA sequence and recombinant DNA technique[J]. IEEE Transactions on Nanotechnology, 2019, 18: 299–307. doi: 10.1109/TNANO.2019.2904842
    ZHANG Yinan, WANG Fei, CHAO Jie, et al. DNA origami cryptography for secure communication[J]. Nature Communications, 2019, 10: 5469. doi: 10.1038/s41467-019-13517-3
    NAMASUDRA S, DEVI D, KADRY S, et al. Towards DNA based data security in the cloud computing environment[J]. Computer Communications, 2020, 151: 539–547. doi: 10.1016/j.comcom.2019.12.041
    ZHANG Xuncai, ZHOU Zheng, and NIU Ying. An image encryption method based on the feistel network and dynamic DNA encoding[J]. IEEE Photonics Journal, 2018: 3901014. doi: 10.1109/JPHOT.2018.2859257
    WANG Xingyuan, ZHANG Yingqian, and ZHAO Yuanyuan. A novel image encryption scheme based on 2-D logistic map and DNA sequence operations[J]. Nonlinear Dynamics, 2015, 82(3): 1269–1280. doi: 10.1007/s11071-015-2234-7
    CHAI Xiuli, CHEN Yiran, and BROYDE Lucie. A novel chaos-based image encryption algorithm using DNA sequence operations[J]. Optics and Lasers in Engineering, 2017, 88: 197–213. doi: 10.1016/j.optlaseng.2016.08.009
    WANG Xingyuan, ZHU Xiaoqiang, and ZHANG Yingqian. An image encryption algorithm based on Josephus traversing and mixed chaotic map[J]. IEEE Access, 2018, 6: 23733–23746. doi: 10.1109/ACCESS.2018.2805847
    郭毅, 邵利平, 杨璐. 基于约瑟夫和Henon映射的比特位图像加密算法[J]. 计算机应用研究, 2015, 32(4): 1131–1137. doi: 10.3969/j.issn.1001-3695.2015.04.041

    GUO Yi, SHAO Liping, and YANG Lu. Bit-level image encryption algorithm based on Josephus and Henon chaotic map[J]. Application Research of Computers, 2015, 32(4): 1131–1137. doi: 10.3969/j.issn.1001-3695.2015.04.041
    梁静, 李红菊, 赵凤, 等. 一种构造GC常重量DNA码的方法[J]. 电子与信息学报, 2019, 41(10): 2423–2427. doi: 10.11999/JEIT190070

    LIANG Jing, LI Hongju, ZHAO Feng, et al. A method for constructing GC constant weight DNA codes[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2423–2427. doi: 10.11999/JEIT190070
    CHAI Zongqian, LIANG Shili, HU Guorong, et al. Periodic characteristics of the Josephus ring and its application in image scrambling[J]. EURASIP Journal on Wireless Communications and Networking, 2018, 2018(1): 162. doi: 10.1186/s13638-018-1167-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(12)

    Article Metrics

    Article views (3284) PDF downloads(167) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return