Advanced Search
Volume 42 Issue 6
Jun.  2020
Turn off MathJax
Article Contents
Junwei SUN, Zhi LI, Yanfeng WANG. Design of Three-cascade Combinatorial Molecular Logic Circuit Based on DNA Strand Displacement[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1401-1409. doi: 10.11999/JEIT190847
Citation: Junwei SUN, Zhi LI, Yanfeng WANG. Design of Three-cascade Combinatorial Molecular Logic Circuit Based on DNA Strand Displacement[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1401-1409. doi: 10.11999/JEIT190847

Design of Three-cascade Combinatorial Molecular Logic Circuit Based on DNA Strand Displacement

doi: 10.11999/JEIT190847
Funds:  The National Key R and D Program of China for International S and T Cooperation Projects (2017YFE0103900), The National Natural Science Foundation of China (U1804262, 61603348, 61632002), The Zhongyuan Thousand Talents Program (204200510003), The Open Fund of State Key Laboratory of Esophageal Cancer Prevention and Treatment (K2020-0010, K2020-0011)
  • Received Date: 2019-11-01
  • Rev Recd Date: 2020-04-18
  • Available Online: 2020-05-13
  • Publish Date: 2020-06-22
  • The research content of DNA computing is various and complex. The construction of DNA complex logic circuit belongs to an important research branch of DNA computing, in which the construction of logic gate belongs to the basic research of DNA complex logic circuit construction. The design of a simpler logic gate is used to provide a reference for researchers to build complex circuits and save valuable time for basic research. In order to solve the above problems, the idea of enable control end and DNA strand displacement technique are used to design three kinds of DNA combinatorial logic gates: AND-OR gate, NAND-NOR gate and XOR-XNOR gate. The results show that the three kinds of combinatorial logic gates can realize six kinds of logic operation functions, and the multi-stage combinatorial molecular logic circuits are successfully constructed by using the combinatorial logic gates, which provides more solutions for DNA calculation. It promotes the development of DNA computer.
  • loading
  • 殷志祥, 唐震, 张强, 等. 基于DNA折纸基底的与非门计算模型[J]. 电子与信息学报, 2020, 42(6): 1355–1364. doi: 10.11999/JEIT190825

    YIN Zhixiang, TANG Zhen, ZHANG Qiang, et al. NAND gate computational model based on the DNA origami template[J]. Journal of Electronics &Information Technology, 2020, 42(6): 1355–1364. doi: 10.11999/JEIT190825
    梁静, 李红菊, 赵凤, 等. 一种构造GC常重量DNA码的方法[J]. 电子与信息学报, 2019, 41(10): 2423–2427. doi: 10.11999/JEIT190070

    LIANG Jing, LI Hongju, ZHAO Feng, et al. A method for constructing GC constant weight DNA codes[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2423–2427. doi: 10.11999/JEIT190070
    ADLEMAN L M. Molecular computation of solutions to combinatorial problems[J]. Science, 1994, 266(5187): 1021–1024. doi: 10.1126/science.7973651
    LAKIN M R, YOUSSEF S, POLO F, et al. Visual DSD: A design and analysis tool for DNA strand displacement systems[J]. Bioinformatics, 2011, 27(22): 3211–3213. doi: 10.1093/bioinformatics/btr543
    ZHU Jinbo, ZHANG Libing, DONG Shaojun, et al. Four-way junction-driven DNA strand displacement and its application in building majority logic circuit[J]. ACS Nano, 2013, 7(11): 10211–10217. doi: 10.1021/nn4044854
    KONG Jinglin, ZHU Jinbo, CHEN Kaikai, et al. Specific biosensing using DNA aptamers and nanopores[J]. Advanced Functional Materials, 2019, 29(3): 180755. doi: 10.1002/adfm.201807555
    CUI Yunxi, FENG Xuenan, WANG Yaxin, et al. An integrated-molecular-beacon based multiple exponential strand displacement amplification strategy for ultrasensitive detection of DNA methyltransferase activity[J]. Chemical Science, 2019, 10(8): 2290–2297. doi: 10.1039/C8SC05102J
    LI Hua, LIU Jin, and GU Hongzhou. Targeting nucleolin to obstruct vasculature feeding with an intelligent DNA nanorobot[J]. Journal of Cellular and Molecular Medicine, 2019, 23(3): 2248–2250. doi: 10.1111/jcmm.14127
    TIKHOMIROV G, PETERSEN P, and QIAN Lulu. Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns[J]. Nature, 2017, 552(7683): 67–71. doi: 10.1038/nature24655
    KIELAR C, REDDAVIDE F V, TUBBENHAUER S, et al. Pharmacophore nanoarrays on DNA origami substrates as a single-molecule assay for fragment-based drug discovery[J]. Angewandte Chemie, 2018, 130(45): 15089–15093. doi: 10.1002/ange.201806778
    TASCIOTTI E. Smart cancer therapy with DNA origami[J]. Nature Biotechnology, 2018, 36(3): 234–235. doi: 10.1038/nbt.4095
    CORDEIRO M, OTRELO-CARDOSO A R, SVERGUN D I, et al. Optical and structural characterization of a chronic myeloid leukemia DNA biosensor[J]. ACS Chemical Biology, 2018, 13(5): 1235–1242. doi: 10.1021/acschembio.8b00029
    QIAN Lulu and WINFREE E. A simple DNA gate motif for synthesizing large-scale circuits[J]. Journal of the Royal Society Interface, 2011, 8(62): 1281–1297. doi: 10.1098/rsif.2010.0729
    WUNSCH B H, KIM S C, GIFFORD S M, et al. Gel-on-a-chip: Continuous, velocity-dependent DNA separation using nanoscale lateral displacement[J]. Lab on a Chip, 2019, 19(9): 1567–1578. doi: 10.1039/C8LC01408F
    王春华, 蔺海荣, 孙晶如, 等. 基于忆阻器的混沌、存储器及神经网络电路研究进展[J]. 电子与信息学报, 2020, 42(4): 795–810. doi: 10.11999/JEIT190821

    WANG Chunhua, LIN Hairong, SUN Jingru, et al. Research Progress on Chaos, Memory and Neural Network Circuits Based on Memristor[J]. Journal of Electronics and Information Technology, 2020, 42(4): 795–810. doi: 10.11999/JEIT190821
    HE Jinglin, ZHANG Yang, YANG Chan, et al. Hybridization chain reaction based DNAzyme fluorescent sensor for L-histidine assay[J]. Analytical Methods, 2019, 11(16): 2204–2210. doi: 10.1039/C9AY00526A
    LIU Na, XU Kai, LIU Liquan, et al. A star-shaped DNA probe based on strand displacement for universal and multiplexed fluorometric detection of genetic variations[J]. Microchimica Acta, 2018, 185(9): 413. doi: 10.1007/s00604-018-2941-0
    ZOU Chengye, WEI Xiaopeng, ZHANG Qiang, et al. Four-analog computation based on DNA strand displacement[J]. ACS Omega, 2017, 2(8): 4143–4160. doi: 10.1021/acsomega.7b00572
    SUN Junwei, LI Xing, CUI Guangzhao, et al. One-bit half adder-half subtractor logical operation based on the DNA strand displacement[J]. Journal of Nanoelectronics and Optoelectronics, 2017, 12(4): 375–380. doi: 10.1166/jno.2017.2027
    LI Wei, YANG Yang, YAN Hao, et al. Three-input majority logic gate and multiple input logic circuit based on DNA strand displacement[J]. Nano Letters, 2013, 13(6): 2980–2988. doi: 10.1021/nl4016107
    张成, 马丽娜, 董亚非, 等. 自组装DNA链置换分子逻辑计算模型[J]. 科学通报, 2012, 57(31): 2909–2915. doi: 10.1360/csb2012-57-31-2909

    ZHANG Cheng, MA Lina, DONG Yafei, et al. Molecular logic computing model based on DNA self-assembly strand branch migration[J]. Chinese Science Bulletin, 2012, 57(31): 2909–2915. doi: 10.1360/csb2012-57-31-2909
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (2262) PDF downloads(111) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return