Citation: | Wei WEI, Jiazhe CHEN, Dan LI, Baofeng ZHANG. Research on the Bit Security of Elliptic Curve Diffie-Hellman[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1820-1827. doi: 10.11999/JEIT190845 |
KOBLITZ N. Elliptic curve cryptosystems[J]. Mathematics of Computation, 1987, 48(177): 203–209. doi: 10.1090/S0025-5718-1987-0866109-5
|
MILLER V S. Use of elliptic curves in cryptography[C]. Proceedings of Conference on the Theory and Application of Cryptographic Techniques, California, USA, 1986: 417–426.
|
BONEH D and VENKATESAN R. Hardness of computing the most significant bits of secret keys in Diffie-Hellman and related schemes[C]. The 16th Annual International Cryptology Conference, California, USA, 1996: 129–142.
|
LIU Mingjie, CHEN Jiazhe, and LI Hexin. Partially known nonces and fault injection attacks on SM2 signature algorithm[C]. The 9th International Conference on Information Security and Cryptology, Guangzhou, China, 2014: 343–358.
|
NGUYEN P Q and SHPARLINSKI I E. The insecurity of the elliptic curve digital signature algorithm with partially known nonces[J]. Designs, Codes and Cryptography, 2003, 30(2): 201–217. doi: 10.1023/A:1025436905711
|
FAN Shuqin, WANG Wenbo, and CHENG Qingfeng. Attacking OpenSSL implementation of ECDSA with a few signatures[C]. 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 2016: 1505–1515.
|
GANJI F, KRÄMER J, SEIFERT J P, et al. Lattice basis reduction attack against physically unclonable functions[C]. The 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, USA, 2015: 1070–1080.
|
BREITNER J and HENINGER N. Biased nonce sense: lattice attacks against weak ECDSA signatures in cryptocurrencies[J]. Financial Cryptography and Data Security, 2019: 3–20.
|
MOGHUMI D, SUNAR B, EISENBARTH T, et al. TPM-FAIL: TPM meets timing and lattice attacks[J]. arXiv: 2019, 1911.05673.
|
BONEH D, HALEVI S, and HOWGRAVE-GRAHAM N. The modular inversion hidden number problem[C]. The 7th International Conference on the Theory and Application of Cryptology and Information Security, Gold Coast, Australia, 2001: 36–51.
|
XU Jun, SARKAR S, HU Lei, et al. New results on modular inversion hidden number problem and inversive congruential generator[C]. The 39th Annual International Cryptology Conference, Santa Barbara, USA, 2019: 297–321.
|
SHANI B. On the bit security of elliptic curve Diffie-Hellman[C]. The 20th IACR International Conference on Practice and Theory in Public-Key Cryptography, Amsterdam, The Netherlands, 2017: 361–387.
|
XU Jun, HU Lei, and SARKAR S. Cryptanalysis of elliptic curve hidden number problem from PKC 2017[J]. Designs, Codes and Cryptography, 2020, 88(2): 341–361. doi: 10.1007/s10623-019-00685-y
|
HLAVÁČ M and ROSA T. Extended hidden number problem and its cryptanalytic applications[C]. The 13th International Workshop on Selected Areas in Cryptography, Montreal, Canada, 2007: 114–133.
|
WEI Wei, CHEN Jiazhe, LI Dan, et al. Partially known information attack on SM2 key exchange protocol[J]. Science China Information Sciences, 2019, 62(3): 032105. doi: 10.1007/s11432-018-9515-9
|
张江, 范淑琴. 关于非对称含错学习问题的困难性研究[J]. 电子与信息学报, 2020, 42(2): 327–332. doi: 10.11999/JEIT190685
ZHANG Jiang and FAN Shuqin. On the hardness of the asymmetric learning with errors problem[J]. Journal of Electronics &Information Technology, 2020, 42(2): 327–332. doi: 10.11999/JEIT190685
|
NGUYEN P Q and SHPARLINSKI I E. The insecurity of the digital signature algorithm with partially known nonces[J]. Journal of Cryptology, 2002, 15(3): 151–176. doi: 10.1007/s00145-002-0021-3
|
谢天元, 李昊宇, 朱熠名, 等. FatSeal: 一种基于格的高效签名算法[J]. 电子与信息学报, 2020, 42(2): 333–340. doi: 10.11999/JEIT190678
XIE Tianyuan, LI Haoyu, ZHU Yiming, et al. FatSeal: An efficient lattice-based signature algorithm[J]. Journal of Electronics &Information Technology, 2020, 42(2): 333–340. doi: 10.11999/JEIT190678
|
LENSTRA A K, LENSTRA H W JR, and LOVÁSZ L. Factoring polynomials with rational coefficients[J]. Mathematische Annalen, 1982, 261(4): 515–534. doi: 10.1007/BF01457454
|
SCHNORR C P. A hierarchy of polynomial time lattice basis reduction algorithms[J]. Theoretical Computer Science, 1987, 53(2/3): 201–224.
|
MICCIANCIO D and GOLDWASSER S. Complexity of Lattice Problems: A Cryptographic Perspective[M]. Boston, USA: Kluwer Academic Publishers, 2002.
|
NGUYEN P Q. Hermite’s Constant and Lattice Algorithms[M]. NGUYEN P Q and VALLÉE B. The LLL Algorithm: Survey and Applications. Berlin, Germany: Springer, 2009: 19–69.
|
GAMA N, NGUYEN P Q, and REGEV O. Lattice enumeration using extreme pruning[C]. The 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques, French Riviera, France, 2010: 257–278.
|
AONO Y and NGUYEN P Q. Random sampling revisited: Lattice enumeration with discrete pruning[C]. The 36th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Paris, France, 2017: 65–102.
|