Advanced Search
Volume 42 Issue 6
Jun.  2020
Turn off MathJax
Article Contents
Junke WANG, Jue YIN, Renjie NIU, Shaokang REN, Jie CHAO. DNA Computing and DNA Nanotechnology[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1313-1325. doi: 10.11999/JEIT190826
Citation: Junke WANG, Jue YIN, Renjie NIU, Shaokang REN, Jie CHAO. DNA Computing and DNA Nanotechnology[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1313-1325. doi: 10.11999/JEIT190826

DNA Computing and DNA Nanotechnology

doi: 10.11999/JEIT190826
Funds:  The National Natural Science Foundation of China (21922408, 61771253), The Natural Science Foundation of Jiangsu Province (BK20190038)
  • Received Date: 2019-10-28
  • Rev Recd Date: 2020-02-25
  • Available Online: 2020-04-07
  • Publish Date: 2020-06-22
  • With the arrival of the post-moore era, the development of traditional silicon-based computers has been on the verge of the limit, which pushes people to develop new computing technology to meet the needs of science and technology and life. Due to its superior parallel computing capability and outstanding data storage capability, DNA computing becomes an important branch of new computer technologies and a hot research field. The booming DNA nanotechnology has provided a new development platform for DNA computing. In this review, a brief introduction to DNA nanotechnology is given firstly, and then the development of DNA computing which is based on DNA logic gate, DNA cascade circuit and intelligent DNA molecular machine is dicussed and prospected.
  • loading
  • ADLEMAN L M. Molecular computation of solutions to combinatorial problems[J]. Science, 1994, 266(5187): 1021–1024. doi: 10.1126/science.7973651
    王雷, 林亚平. DNA计算在整数规划问题中的应用[J]. 电子与信息学报, 2005, 27(5): 814–818.

    WANG Lei and LIN Yaping. DNA computation for a category of special integer planning problem[J]. Journal of Electronics &Information Technology, 2005, 27(5): 814–818.
    吴雪, 赵艺. 最大加权独立集问题的DNA算法[J]. 电子与信息学报, 2007, 29(11): 2693–2697.

    WU Xue and ZHAO Yi. DNA solution of the maximum weighted independent set[J]. Journal of Electronics &Information Technology, 2007, 29(11): 2693–2697.
    KALLENBACH N R, MA R I, and SEEMAN N C. An immobile nucleic acid junction constructed from oligonucleotides[J]. Nature, 1983, 305(5937): 829–831. doi: 10.1038/305829a0
    FU T J and SEEMAN N C. DNA double-crossover molecules[J]. Biochemistry, 1992, 32(13): 3211–3220. doi: 10.1021/bi00064a003
    WINFREE E, LIU Furong, WENZLER L A, et al. Design and self-assembly of two-dimensional DNA crystals[J]. Nature, 1998, 394(6693): 539–544. doi: 10.1038/28998
    YAN Hao, PARK S H, FINKELSTEIN G, et al. DNA-templated self-assembly of protein arrays and highly conductive nanowires[J]. Science, 2003, 301(5641): 1882–1884. doi: 10.1126/science.1089389
    WEI B, DAI Mingjie, and YIN Peng. Complex shapes self-assembled from single-stranded DNA tiles[J]. Nature, 2012, 485(7400): 623–626. doi: 10.1038/nature11075
    SHI Xiaolong, LU Wei, WANG Zhiyu, et al. Programmable DNA tile self-assembly using a hierarchical sub-tile strategy[J]. Nanotechnology, 2014, 25(7): 075602. doi: 10.1088/0957-4484/25/7/075602
    ROTHEMUND P W K. Folding DNA to create nanoscale shapes and patterns[J]. Nature, 2006, 440(7082): 297–302. doi: 10.1038/nature04586
    QIAN Lulu, WANG Ying, ZHANG Zhao, et al. Analogic China map constructed by DNA[J]. Chinese Science Bulletin, 2006, 51(24): 2973–2976. doi: 10.1007/s11434-006-2223-9
    ANDERSEN E S, DONG Mingdong, NIELSEN M M, et al. DNA origami design of dolphin-shaped structures with flexible tails[J]. ACS Nano, 2008, 2(6): 1213–1218. doi: 10.1021/nn800215j
    ZHANG Honglu, CHAO Jie, PAN Dun, et al. Folding super-sized DNA origami with scaffold strands from long-range PCR[J]. Chemical Communications, 2012, 48(51): 6405–6407. doi: 10.1039/c2cc32204h
    DOUGLAS S M, DIETZ H, LIEDL T, et al. Self-assembly of DNA into nanoscale three-dimensional shapes[J]. Nature, 2009, 459(7245): 414–418. doi: 10.1038/nature08016
    DOUGLAS S M, MARBLESTONE A H, TEERAPITTAYANON S, et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno[J]. Nucleic Acids Research, 2009, 37(15): 5001–5006. doi: 10.1093/nar/gkp436
    DIETZ H, DOUGLAS S M, and SHIH W M. Folding DNA into twisted and curved nanoscale shapes[J]. Science, 2009, 325(5941): 725–730. doi: 10.1126/science.1174251
    KIM Y J, LEE C, LEE J G, et al. Configurational design of mechanical perturbation for fine control of twisted dna origami structures[J]. ACS Nano, 2019, 13(6): 6348–6355. doi: 10.1021/acsnano.9b01561
    HAN Dongran, PAL S, NANGREAVE J, et al. DNA origami with complex curvatures in three-dimensional space[J]. Science, 2011, 332(6027): 342–346. doi: 10.1126/science.1202998
    LIN Zhiwei, XIONG Yan, XIANG Shuting, et al. Controllable covalent-bound nanoarchitectures from DNA frames[J]. Journal of the American Chemical Society, 2019, 141(17): 6797–6801. doi: 10.1021/jacs.9b01510
    ZHANG Tao, HARTL C, FRANK K, et al. 3D DNA origami crystals[J]. Advanced Materials, 2018, 30(28): 1800273. doi: 10.1002/adma.201800273
    HAN Dongran, PAL S, YANG Yang, et al. DNA gridiron nanostructures based on four-arm junctions[J]. Science, 2013, 339(6126): 1412–1415. doi: 10.1126/science.1232252
    KE Yonggang, ONG L L, SUN Wei, et al. DNA brick crystals with prescribed depths[J]. Nature Chemistry, 2014, 6(11): 994–1002. doi: 10.1038/nchem.2083
    WANG Wen, CHEN Silian, AN B, et al. Complex wireframe DNA nanostructures from simple building blocks[J]. Nature Communications, 2019, 10(1): 1067. doi: 10.1038/s41467-019-08647-7
    STOJANOVIC M N, MITCHELL T E, and STEFANOVIC D. Deoxyribozyme-based logic gates[J]. Journal of the American Chemical Society, 2002, 124(14): 3555–3561. doi: 10.1021/ja016756v
    STOJANOVIC M N and STEFANOVIC D. Deoxyribozyme-based half-adder[J]. Journal of the American Chemical Society, 2003, 125(22): 6673–6676. doi: 10.1021/ja0296632
    PENCHOVSKY R and BREAKER R R. Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes[J]. Nature Biotechnology, 2005, 23(11): 1424–1433. doi: 10.1038/nbt1155
    CHEN Xi, WANG Yifei, LIU Qiang, et al. Construction of molecular logic gates with a DNA-cleaving deoxyribozyme[J]. Angewandte Chemie, 2006, 118(11): 1791–1794. doi: 10.1002/ange.200502511
    SEELIG G, SOLOVEICHIK D, ZHANG D Y, et al. Enzyme-free nucleic acid logic circuits[J]. Science, 2006, 314(5805): 1585–1588. doi: 10.1126/science.1132493
    QIAN Lulu and WINFREE E. A simple DNA gate motif for synthesizing large-scale circuits[J]. Journal of the Royal Society Interface, 2011, 8(62): 1281–1297. doi: 10.1098/rsif.2010.0729
    LI Wei, YANG Yang, YAN Hao, et al. Three-input majority logic gate and multiple input logic circuit based on DNA strand displacement[J]. Nano Letters, 2013, 13(6): 2980–2988. doi: 10.1021/nl4016107
    PROKUP A, HEMPHILL J, and DEITERS A. DNA computation: A photochemically controlled and gate[J]. Journal of the American Chemical Society, 2012, 134(8): 3810–3815. doi: 10.1021/ja210050s
    HEMPHILL J and DEITERS A. DNA computation in mammalian cells: MicroRNA logic operations[J]. Journal of the American Chemical Society, 2013, 135(28): 10512–10518. doi: 10.1021/ja404350s
    MORIHIRO K, ANKENBRUCK N, LUKASAK B, et al. Small molecule release and activation through DNA computing[J]. Journal of the American Chemical Society, 2017, 139(39): 13909–13915. doi: 10.1021/jacs.7b07831
    PENG Ruizi, ZHENG Xiaofang, LYU Yifan, et al. Engineering a 3D DNA-logic gate nanomachine for bispecific recognition and computing on target cell surfaces[J]. Journal of the American Chemical Society, 2018, 140(31): 9793–9796. doi: 10.1021/jacs.8b04319
    SONG Tingjie and LIANG Haojun. Synchronized assembly of gold nanoparticles driven by a dynamic DNA-fueled molecular machine[J]. Journal of the American Chemical Society, 2012, 134(26): 10803–10806. doi: 10.1021/ja304746k
    YANG Jing, SHEN Lingjing, MA Jingjing, et al. Fluorescent nanoparticle beacon for logic gate operation regulated by strand displacement[J]. ACS Applied Materials & Interfaces, 2013, 5(12): 5392–5396. doi: 10.1021/am401493d
    NIKITIN M P, SHIPUNOVA V O, DEYEV S M, et al. Biocomputing based on particle disassembly[J]. Nature Nanotechnology, 2014, 9(9): 716–722. doi: 10.1038/nnano.2014.156
    PHILLIPS A and CARDELLI L. A programming language for composable DNA circuits[J]. Journal of the Royal Society Interface, 2009, 6(Suppl 4): S419–S436. doi: 10.1098/rsif.2009.0072.focus
    LAKIN M R, YOUSSEF S, POLO F, et al. Visual DSD: A design and analysis tool for DNA strand displacement systems[J]. Bioinformatics, 2011, 27(22): 3211–3213. doi: 10.1093/bioinformatics/btr543
    GEORGE A K and SINGH H. DNA strand displacement-based logic inverter gate design[J]. Micro & Nano Letters, 2017, 12(9): 611–614. doi: 10.1049/mnl.2017.0142
    NIU YING, SHEN CHAONAN, and ZHANG XUNCAI. Design of logic circuits based on metallo-toehold strand displacement[J]. Journal of Nanoelectronics and Optoelectronics, 2019, 14(2): 232–237. doi: 10.1166/jno.2019.2480
    CHERRY K M and QIAN Lulu. Scaling up molecular pattern recognition with DNA-based winner-take-all neural networks[J]. Nature, 2018, 559(7714): 370–376. doi: 10.1038/s41586-018-0289-6
    ANDERSEN E S, DONG Mingdong, NIELSEN M M, et al. Self-assembly of a nanoscale DNA box with a controllable lid[J]. Nature, 2009, 459(7243): 73–76. doi: 10.1038/nature07971
    DOUGLAS S M, BACHELET I, and CHURCH G M. A logic-gated nanorobot for targeted transport of molecular payloads[J]. Science, 2012, 335(6070): 831–834. doi: 10.1126/science.1214081
    AMIR Y, BEN-ISHAY E, LEVNER D, et al. Universal computing by DNA origami robots in a living animal[J]. Nature Nanotechnology, 2014, 9(5): 353–357. doi: 10.1038/nnano.2014.58
    WANG Dongfang, FU Yanming, YAN Juan, et al. Molecular logic gates on DNA origami nanostructures for microRNA diagnostics[J]. Analytical Chemistry, 2014, 86(4): 1932–1936. doi: 10.1021/ac403661z
    ZHANG Cheng, YANG Jing, JIANG Shuoxing, et al. DNAzyme-based logic gate-mediated DNA self-assembly[J]. Nano Letters, 2016, 16(1): 736–741. doi: 10.1021/acs.nanolett.5b04608
    STOJANOVIC M N and STEFANOVIC D. A deoxyribozyme-based molecular automaton[J]. Nature Biotechnology, 2003, 21(9): 1069–1074. doi: 10.1038/nbt862
    MACDONALD J, LI Yang, SUTOVIC M, et al. Medium scale integration of molecular logic gates in an automaton[J]. Nano Letters, 2006, 6(11): 2598–2603. doi: 10.1021/nl0620684
    PEI Renjun, MATAMOROS E, LIU Manhong, et al. Training a molecular automaton to play a game[J]. Nature Nanotechnology, 2010, 5(11): 773–777. doi: 10.1038/nnano.2010.194
    SONG Tianqi, GARG S, MOKHTAR R, et al. Analog computation by DNA strand displacement circuits[J]. ACS Synthetic Biology, 2016, 5(8): 898–912. doi: 10.1021/acssynbio.6b00144
    QIAN Lulu and WINFREE E. Scaling up digital circuit computation with DNA strand displacement cascades[J]. Science, 2011, 332(6034): 1196–1201. doi: 10.1126/science.1200520
    SONG Tianqi, ESHRA A, SHAH S, et al. Fast and compact DNA logic circuits based on single-stranded gates using strand-displacing polymerase[J]. Nature Nanotechnology, 2019, 14(11): 1075–1081. doi: 10.1038/s41565-019-0544-5
    QIAN Lulu, WINFREE E, and BRUCK J. Neural network computation with DNA strand displacement cascades[J]. Nature, 2011, 475(7356): 368–372. doi: 10.1038/nature10262
    BUI H, SHAH S, MOKHTAR R, et al. Localized DNA hybridization chain reactions on DNA origami[J]. ACS Nano, 2018, 12(2): 1146–1155. doi: 10.1021/acsnano.7b06699
    LIU Huajie, WANG Jianbang, SONG Shiping, et al. A DNA-based system for selecting and displaying the combined result of two input variables[J]. Nature Communications, 2015, 6: 10089. doi: 10.1038/ncomms10089
    CHATTERJEE G, DALCHAU N, MUSCAT R A, et al. A spatially localized architecture for fast and modular DNA computing[J]. Nature Nanotechnology, 2017, 12(9): 920–927. doi: 10.1038/nnano.2017.127
    BOEMO M A, LUCAS A E, TURBERFIELD A J, et al. The formal language and design principles of autonomous DNA walker circuits[J]. ACS Synthetic Biology, 2016, 5(8): 878–884. doi: 10.1021/acssynbio.5b00275
    SHERMAN W B and SEEMAN N C. A precisely controlled DNA biped walking device[J]. Nano Letters, 2004, 4(7): 1203–1207. doi: 10.1021/nl049527q
    YIN Peng, YAN Hao, DANIELL X G, et al. A unidirectional DNA walker that moves autonomously along a track[J]. Angewandte Chemie: International Edition, 2004, 43(37): 4906–4911. doi: 10.1002/anie.200460522
    BATH J, GREEN S J, and TURBERFIELD A J. A free-running DNA motor powered by a nicking enzyme[J]. Angewandte Chemie: International Edition, 2005, 44(28): 4358–4361. doi: 10.1002/anie.200501262
    LUND K, MANZO A J, DABBY N, et al. Molecular robots guided by prescriptive landscapes[J]. Nature, 2010, 465(7295): 206–210. doi: 10.1038/nature09012
    WICKHAM S F J, BATH J, KATSUDA Y, et al. A DNA-based molecular motor that can navigate a network of tracks[J]. Nature Nanotechnology, 2012, 7(3): 169–173. doi: 10.1038/nnano.2011.253
    GU Hongzhou, CHAO Jie, XIAO Shoujun, et al. A proximity-based programmable DNA nanoscale assembly line[J]. Nature, 2010, 465(7295): 202–205. doi: 10.1038/nature09026
    JUNG C, ALLEN P B, and ELLINGTON A D. A stochastic DNA walker that traverses a microparticle surface[J]. Nature Nanotechnology, 2016, 11(2): 157–163. doi: 10.1038/nnano.2015.246
    THUBAGERE A J, LI Wei, JOHNSON R F, et al. A cargo-sorting DNA robot[J]. Science, 2017, 357(6356): eaan6558. doi: 10.1126/science.aan6558
    CHAO Jie, WANG Jianbang, WANG Fei, et al. Solving mazes with single-molecule DNA navigators[J]. Nature Materials, 2019, 18(3): 273–279. doi: 10.1038/s41563-018-0205-3
    DIRKS R M and PIERCE N A. Triggered amplification by hybridization chain reaction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(43): 15275–15278. doi: 10.1073/pnas.0407024101
    SCHULMAN R, YURKE B, and WINFREE E. Robust self-replication of combinatorial information via crystal growth and scission[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(17): 6405–6410. doi: 10.1073/pnas.1117813109
    WOODS D, DOTY D, MYHRVOLD C, et al. Diverse and robust molecular algorithms using reprogrammable DNA self-assembly[J]. Nature, 2019, 572(7771): E21. doi: 10.1038/s41586-019-1378-x
    JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816–821. doi: 10.1126/science.1225829
    CURRIN A, KOROVIN K, ABABI M, et al. Computing exponentially faster: Implementing a non-deterministic universal turing machine using DNA[J]. Journal of the Royal Society Interface, 2017, 14(128): 20160990. doi: 10.1098/rsif.2016.0990
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (4399) PDF downloads(231) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return