Citation: | Chunhua WANG, Hairong LIN, Jingru SUN, Ling ZHOU, Chao ZHOU, Quanli DENG. Research Progress on Chaos, Memory and Neural Network Circuits Based on Memristor[J]. Journal of Electronics & Information Technology, 2020, 42(4): 795-810. doi: 10.11999/JEIT190821 |
CHUA L O. Memristor-the missing circuit element[J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507–519. doi: 10.1109/tct.1971.1083337
|
STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found[J]. Nature, 2008, 453(7191): 80–83. doi: 10.1038/nature06932
|
KIM H, SAH M P, YANG C J, et al. Memristor emulator for memristor circuit applications[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59(10): 2422–2431. doi: 10.1109/tcsi.2012.2188957
|
WANG Xiaobin, CHEN Yiran, XI Haiwen, et al. Spintronic memristor through spin-torque-induced magnetization motion[J]. IEEE Electron Device Letters, 2009, 30(3): 294–297. doi: 10.1109/LED.2008.2012270
|
HU Miao, LI Hai, CHEN Yiran, et al. Geometry variations analysis of TiO2 thin-film and spintronic memristors[C]. The 16th Asia and South Pacific Design Automation Conference, Yokohama, Japan, 2011: 25–30. doi: 10.1109/ASPDAC.2011.5722193.
|
VOURKAS I, and SIRAKOULIS G C. A novel design and modeling paradigm for memristor-based crossbar circuits[J]. IEEE Transactions on Nanotechnology, 2012, 11(6): 1151–1159. doi: 10.1109/TNANO.2012.2217153
|
KVATINSKY S, FRIEDMAN E G, KOLODNY A, et al. TEAM: Threshold adaptive memristor model[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60(1): 211–221. doi: 10.1109/TCSI.2012.2215714
|
KVATINSKY S, RAMADAN M, FRIEDMAN E G, et al. VTEAM: A general model for voltage-controlled memristors[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2015, 62(8): 786–790. doi: 10.1109/TCSⅡ.2015.2433536
|
ZHANG Yang, LI Yi, WANG Xiaoping, et al. Synaptic characteristics of Ag/AgInSbTe/Ta-based memristor for pattern recognition applications[J]. IEEE Transactions on Electron Devices, 2017, 64(4): 1806–1811. doi: 10.1109/TED.2017.2671433
|
SHERI A M, HWANG H, JEON M, et al. Neuromorphic character recognition system with two PCMO memristors as a synapse[J]. IEEE Transactions on Industrial Electronics, 2014, 61(6): 2933–2941. doi: 10.1109/tie.2013.2275966
|
CHOI S, SHERIDAN P, and LU W D. Data clustering using memristor networks[J]. Scientific Reports, 2015, 5: 10492. doi: 10.1038/srep10492
|
DOU Gang, YU Yang, GOU Mei, et al. Memristive behavior based on Ba-doped SrTiO3 films[J]. Chinese Physics Letters, 2017, 34(3): 038502. doi: 10.1088/0256-307X/34/3/038502
|
CORINTO F and ASCOLI A. Memristive diode bridge with LCR filter[J]. Electronics Letters, 2012, 48(14): 824–825. doi: 10.1049/el.2012.1480
|
SANCHEZ-LÓPEZ C, MENDOZA-LÓPEZ J, CARRASCO-AGUILAR M A, et al. A floating analog memristor emulator circuit[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2014, 61(5): 309–313. doi: 10.1109/TCSⅡ.2014.2312806
|
BABACAN Y and KAÇAR F. Floating memristor emulator with subthreshold region[J]. Analog Integrated Circuits and Signal Processing, 2017, 90(2): 471–475. doi: 10.1007/s10470-016-0888-9
|
ADHIKARI S P, SAH M P, KIM H, et al. Three fingerprints of memristor[J]. IEEE Transactions on Circuits and Systems-I, 2013, 60(11): 3008–3021. doi: 10.1109/TCSI.2013.2256171
|
CHUA L O. If it’s pinched it’s a memristor[J]. Semiconductor Science and Technology, 2014, 29(10): 1040001–1040042. doi: 10.1088/0268-1242/29/10/104001
|
BAO Bocheng, YU Jingjing, HU Fengwei, et al. Generalized memristor consisting of diode bridge with first order parallel RC filter[J]. International Journal of Bifurcation and Chaos, 2014, 24(11): 1450143. doi: 10.1142/S0218127414501430
|
YUAN Fang and LI Yuxia. A chaotic circuit constructed by a memristor, a memcapacitor and a meminductor[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2019, 29(10): 101101. doi: 10.1063/1.5125673
|
ITOH M and CHUA L O. Memristor oscillators[J]. International Journal of Bifurcation and Chaos, 2008, 18(11): 3183–3206. doi: 10.1142/S0218127408022354
|
FITCH A L, YU Dongsheng, IU H H C, et al. Hyperchaos in a memristor-based modified canonical chua's circuit[J]. International Journal of Bifurcation and Chaos, 2012, 22(6): 1250133. doi: 10.1142/S0218127412501337
|
BAO Han, JIANG Tao, CHU Kaibin, et al. Memristor-based canonical Chua’s circuit: Extreme multistability in voltage-current domain and its controllability in flux-charge domain[J]. Complexity, 2018, 2018: 5935637. doi: 10.1155/2018/5935637
|
AHAMED A I and LAKSHMANAN M. Nonsmooth bifurcations, transient hyperchaos and hyperchaotic beats in a memristive murali-lakshmanan-chua circuit[J]. International Journal of Bifurcation and Chaos, 2013, 23(6): 1350098. doi: 10.1142/S0218127413500983
|
ZHAO Qing, WANG Chunhua, and ZHANG Xin. A universal emulator for memristor, memcapacitor, and meminductor and its chaotic circuit[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2019, 29(1): 013141. doi: 10.1063/1.5081076
|
BUSCARINO A, FORTUNA L, FRASCA M, et al. A chaotic circuit based on Hewlett-Packard memristor[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2012, 22(2): 023136. doi: 10.1063/1.4729135
|
BAO Bocheng, JIANG Tao, WANG Guangyi, et al. Two-memristor-based Chua’s hyperchaotic circuit with plane equilibrium and its extreme multistability[J]. Nonlinear Dynamics, 2017, 89(2): 1157–1171. doi: 10.1007/s11071-017-3507-0
|
BAO Bocheng, JIANG Pan, WU Huagan, et al. Complex transient dynamics in periodically forced memristive Chua’s circuit[J]. Nonlinear Dynamics, 2015, 79(4): 2333–2343. doi: 10.1007/s11071-014-1815-1
|
洪庆辉, 曾以成, 李志军. 含磁控和荷控两种忆阻器的混沌电路设计与仿真[J]. 物理学报, 2013, 62(23): 230502. doi: 10.7498/aps.62.230502
HONG Qinghui, ZENG Yicheng, and LI Zhijun. Design and simulation of chaotic circuit for flux-controlled memristor and charge-controlled memristor[J]. Acta Physica Sinica, 2013, 62(23): 230502. doi: 10.7498/aps.62.230502
|
XU Quan, LIN Yi, BAO Bocheng, et al. Multiple attractors in a non-ideal active voltage- controlled memristor based Chua's circuit[J]. Chaos, Solitons & Fractals, 2016, 83: 186–200. doi: 10.1016/j.chaos.2015.12.007
|
CHEN Mo, LI Mengyuan, YU Qing, et al. Dynamics of self-excited attractors and hidden attractors in generalized memristor-based Chua’s circuit[J]. Nonlinear Dynamics, 2016, 81(1/2): 215–226. doi: 10.1007/s11071-015-1983-7
|
WANG Chunhua, LIU Xiaoming, and XIA Hu. Multi-piecewise quadratic nonlinearity memristor and its 2N-scroll and 2N+ 1-scroll chaotic attractors system[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2017, 27(3): 033114. doi: 10.1063/1.4979039
|
GUO Mei, YANG Wenyan, XUE Youbao, et al. Multistability in a physical memristor-based modified Chua’s circuit[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2019, 29(4): 043114. doi: 10.1063/1.5089293
|
LI Qingdu, ZENG Hongzheng, and LI Jing. Hyperchaos in a 4D memristive circuit with infinitely many stable equilibria[J]. Nonlinear Dynamics, 2015, 79(4): 2295–2308. doi: 10.1007/s11071-014-1812-4
|
MA Jian, CHEN Zengqiang, WANG Zhonglin, et al. A four-wing hyper-chaotic attractor generated from a 4-D memristive system with a line equilibrium[J]. Nonlinear Dynamics, 2015, 81(3): 1275–1288. doi: 10.1007/s11071-015-2067-4
|
ZHOU Ling, WANG Chunhua, and ZHOU Lili. Generating four-wing hyperchaotic attractor and two-wing, three-wing, and four-wing chaotic attractors in 4D memristive system[J]. International Journal of Bifurcation and Chaos, 2017, 27(2): 1750027. doi: 10.1142/S0218127417500274
|
ZHOU Ling, WANG Chunhua, and ZHOU Lili. A novel no-equilibrium hyperchaotic multi-wing system via introducing memristor[J]. International Journal of Circuit Theory and Applications, 2018, 46(1): 84–98. doi: 10.1002/cta.2339
|
WANG Chunhua, XIA Hu, and ZHOU Ling. A memristive hyperchaotic multiscroll jerk system with controllable scroll numbers[J]. International Journal of Bifurcation and Chaos, 2017, 27(6): 1750091. doi: 10.1142/S0218127417500912
|
BAO Han, WANG Ning, BAO Bocheng, et al. Initial condition-dependent dynamics and transient period in memristor-based hypogenetic jerk system with four line equilibria[J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 57: 264–275. doi: 10.1016/j.cnsns.2017.10.001
|
阮静雅, 孙克辉, 牟骏. 基于忆阻器反馈的Lorenz超混沌系统及其电路实现[J]. 物理学报, 2016, 65(19): 190502. doi: 10.7498/aps.65.190502
RUAN Jingya, SUN Kehui, and MOU Jun. Memristor-based Lorenz hyper-chaotic system and its circuit implementation[J]. Acta Physica Sinica, 2016, 65(19): 190502. doi: 10.7498/aps.65.190502
|
ZHOU Ling, WANG Chunhua, and ZHOU Lili. Generating hyperchaotic multi-wing attractor in a 4D memristive circuit[J]. Nonlinear Dynamics, 2016, 85(4): 2653–2663. doi: 10.1007/s11071-016-2852-8
|
俞清, 包伯成, 胡丰伟, 等. 基于一阶广义忆阻器的文氏桥混沌振荡器研究[J]. 物理学报, 2014, 63(24): 240505. doi: 10.7498/aps.63.240505
YU Qing, BAO Bocheng, HU Fengwei, et al. Wien-bridge chaotic oscillator based on fisrt-order generalized memristor[J]. Acta Physica Sinica, 2014, 63(24): 240505. doi: 10.7498/aps.63.240505
|
WU Huagan, BAO Bocheng, LIU Zhong, et al. Chaotic and periodic bursting phenomena in a memristive Wien-bridge oscillator[J]. Nonlinear Dynamics, 2016, 83(1/2): 893–903. doi: 10.1007/s11071-015-2375-8
|
XU Birong, WANG Guangyi, WANG Xiaoyuan, et al. A third-order memristive Wien-bridge circuit and its integrable deformation[J]. Pramana, 2019, 93(42): 1–14. doi: 10.1007/s12043-019-1807-2
|
LI Zhijun and ZHENG Yicheng. A memristor oscillator based on a twin-T network[J]. Chinese Physics B, 2013, 22(4): 040502. doi: 10.1088/1674-1056/22/4/040502
|
ZHOU Ling, WANG Chunhua, ZHANG Xin, et al. Various attractors, coexisting attractors and antimonotonicity in a simple fourth-order memristive twin-t oscillator[J]. International Journal of Bifurcation and Chaos, 2018, 28(4): 1850050. doi: 10.1142/s0218127418500505
|
BAO Bocheng, JIANG Tao, XU Quan, et al. Coexisting infinitely many attractors in active band-pass filter-based memristive circuit[J]. Nonlinear Dynamics, 2016, 86(3): 1711–1723. doi: 10.1007/s11071-016-2988-6
|
BAO Bocheng, WANG Ning, XU Quan, et al. A simple third-order memristive band pass filter chaotic circuit[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2017, 64(8): 977–981. doi: 10.1109/TCSⅡ.2016.2641008
|
WANG Ning, ZHANG Guoshan, and BAO Han. Bursting oscillations and coexisting attractors in a simple memristor-capacitor-based chaotic circuit[J]. Nonlinear Dynamics, 2019, 97(2): 1477–1494. doi: 10.1007/s11071-019-05067-6
|
VARSHNEY V, SABARATHINAM S, PRASAD A, et al. Infinite number of hidden attractors in memristor-based autonomous duffing oscillator[J]. International Journal of Bifurcation and Chaos, 2018, 28(1): 1850013. doi: 10.1142/S021812741850013X
|
TENG Lin, IU H H C, WANG Xingyuan, et al. Chaotic behavior in fractional-order memristor-based simplest chaotic circuit using fourth degree polynomial[J]. Nonlinear Dynamics, 2014, 77(1/2): 231–241. doi: 10.1007/s11071-014-1286-4
|
CANG Shijian, WU Aiguo, WANG Zenghui, et al. Birth of one-to-four-wing chaotic attractors in a class of simplest three-dimensional continuous memristive systems[J]. Nonlinear Dynamics, 2016, 83(4): 1987–2001. doi: 10.1007/s11071-015-2460-z
|
WANG Chunhua, XIA Hu, and ZHOU Ling. Implementation of a new memristor-based multiscroll hyperchaotic system[J]. Pramana, 2017, 88(34): 1–7. doi: 10.1007/s12043-016-1342-3
|
HO Y, HUANG G M, and LI Peng. Nonvolatile memristor memory: Device characteristics and design implications[C]. 2009 IEEE/ACM International Conference on Computer-aided Design-digest of Technical Papers, San Jose, USA, 2009, 485–490. doi: 10.1145/1687399.1687491.
|
HO Y, HUANG G M, and LI Peng. Dynamical properties and design analysis for nonvolatile memristor memories[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2011, 58(4): 724–736. doi: 10.1109/TCSI.2010.2078710
|
KIM S, JEONG H Y, KIM S K, et al. Flexible memristive memory array on plastic substrates[J]. Nano Letters, 2011, 11(12): 5438–5442. doi: 10.1021/nl203206h
|
ZANGENEH M and JOSHI A. Design and optimization of nonvolatile multibit 1T1R resistive RAM[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2014, 22(8): 1815–1828. doi: 10.1109/TVLSI.2013.2277715
|
ZHANG Yang, SHEN Yi, WANG Xiaoping, et al. A novel design for memristor-based logic switch and crossbar circuits[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(5): 1402–1411. doi: 10.1109/TCSI.2015.2407436
|
ZIDAN M A, FAHMY H A H, HUSSAIN M M, et al. Memristor-based memory: The sneak paths problem and solutions[J]. Microelectronics Journal, 2013, 44(2): 176–183. doi: 10.1016/j.mejo.2012.10.001
|
LEE M J, PARK Y, KANG B S, et al. 2-stack 1D-1R cross-point structure with oxide diodes as switch elements for high density resistance RAM applications[C]. 2007 IEEE International Electron Devices Meeting, Washington, USA, 2007: 771–774. doi: 10.1109/IEDM.2007.4419061.
|
MANEM H and ROSE G S. A read-monitored write circuit for 1T1M multi-level memristor memories[C]. 2011 IEEE International Symposium of Circuits and Systems, Rio de Janeiro, Brazil, 2011, 2938–2941. doi: 10.1109/ISCAS.2011.5938207.
|
HAMDIOUI S, AZIZA H, and SIRAKOULIS G C. Memristor based memories: Technology, design and test[C]. The 9th IEEE International Conference on Design & Technology of Integrated Systems in Nanoscale Era, Santorini, Greece, 2014: 1–7. doi: 10.1109/DTIS.2014.6850647.
|
SAKIB M N, HASSAN R, and BISWAS S. Design a memristor-based hybrid memory cell having faster bidirectional storage operation[C]. The 5th International Conference on Informatics, Electronics and Vision, Dhaka, Bangladesh, 2016. doi: 10.1109/ICIEV.2016.7760089.
|
RABBANI P, DEHGHANI R, and SHAHPARI N. A multilevel memristor-CMOS memory cell as a ReRAM[J]. Microelectronics Journal, 2015, 46(12): 1283–1290. doi: 10.1016/j.mejo.2015.10.006
|
SHEU S S, KUO C C, CHANG M F, et al. A ReRAM integrated 7T2R non-volatile SRAM for normally-off computing application[C]. 2013 IEEE Asian Solid-state Circuits Conference, Singapore, 2013: 245–248. doi: 10.1109/ASSCC.2013.6691028.
|
HO P W C, ALMURIB H A F, and KUMAR T N. Memristive SRAM cell of seven transistors and one memristor[J]. Journal of Semiconductors, 2016, 37(10): 104002. doi: 10.1088/1674-4926/37/10/104002
|
TEIMOORI M, AMIRSOLEIMANI A, AHMADI A, et al. A 2M1M Crossbar Architecture: Memory[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26(12): 2608–2618. doi: 10.1109/TVLSI.2018.2799951
|
MAAN A K, JAYADEVI D A, JAMES A P. A survey of memristive threshold logic circuits[J]. IEEE Transaactions on Neural Networks and Lerning System, 2016, 28(8): 1734–1746. doi: 10.1109/TNNLS.2016.2547842
|
EMARA A, GHONEIMA M, and EL-DESSOUKY M. Differential 1T2M memristor memory cell for single/multi-bit RRAM modules[C]. The 6th Computer Science and Electronic Engineering Conference, Colchester, UK, 2014: 69–72. doi: 10.1109/ceec.2014.6958557.
|
YILMAZ Y and MAZUMDER P. A drift-tolerant read/write scheme for multilevel memristor memory[J]. IEEE Transactions on Nanotechnology, 2017, 16(6): 1016–1027. doi: 10.1109/TNANO.2017.2741504
|
SAKIB M N, HASSAN R, BISWAS S N, et al. Memristor-based high-speed memory cell with stable successive read operation[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37(5): 1037–1049. doi: 10.1109/TCAD.2017.2729464
|
WANG Xiaoping, LI Shuai, LIU Hui, et al. A compact scheme of reading and writing for memristor-based multivalued memory[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37(7): 1505–1509. doi: 10.1109/TCAD.2017.2753199
|
EMARA A and GHONEIMA M. A reference-less multilevel memristor based RRAM module[C]. The 58th IEEE International Midwest Symposium on Circuits and Systems, Fort Collins, 2015: 1–4. doi: 10.1109/MWSCAS.2015.7282147.
|
SHAARAWY N, EMARA A, EL-NAGGAR A M, et al. Design and analysis of 2T2M hybrid CMOS-memristor based RRAM[J]. Microelectronics Journal, 2018, 73: 75–85. doi: 10.1016/j.mejo.2018.01.001
|
KIM H, SAH M P, YANG Changju, et al. Memristor bridge synapses[J]. Proceedings of the IEEE, 2012, 100(6): 2061–2070. doi: 10.1109/JPROC.2011.2166749
|
ADHIKARI S P, YANG Changju, KIM H, et al. Memristor bridge synapse-based neural network and its learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(9): 1426–1435. doi: 10.1109/tnnls.2012.2204770
|
ADHIKARI S P, KIM H, BUDHATHOKI R K, et al. A circuit-based learning architecture for multilayer neural networks with memristor bridge synapses[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(1): 215–223. doi: 10.1109/TCSI.2014.2359717
|
冯广, 段书凯, 王丽丹. 双极性脉冲忆阻桥电子突触神经网络及图像处理[J]. 中国科学: 信息科学, 2017, 47(3): 385–400. doi: 10.1360/N112016-00061
FENG Guang, DUAN Shukai, and WANG Lidan. Neural networks based on doublet generator synapses and its applications in image processing[J]. Scientia Sinica Informationis, 2017, 47(3): 385–400. doi: 10.1360/N112016-00061
|
ALIBART F, ZAMANIDOOST E, and STRUKOV D B. Pattern classification by memristive crossbar circuits using ex situ and in situ training[J]. Nature Communications, 2013, 4(1): 1–7. doi: 10.1038/ncomms3072
|
YAKOPCIC C, HASAN R, TAHA T M, et al. Memristor-based neuron circuit and method for applying learning algorithm in SPICE[J]. Electronics Letters, 2014, 50(7): 492–494. doi: 10.1049/el.2014.0464
|
TRUONG S N and MIN K S. New memristor-based crossbar array architecture with 50-% area reduction and 48-% power saving for matrix-vector multiplication of analog neuromorphic computing[J]. Journal of Semiconductor Technology and Science, 2014, 14(3): 356–363. doi: 10.5573/jsts.2014.14.3.356
|
SOUDRY D, DI CASTRO D, GAL A, et al. Memristor-based multilayer neural networks with online gradient descent training[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(10): 2408–2421. doi: 10.1109/tnnls.2014.2383395
|
HASAN R, TAHA T M, and YAKOPCIC C. On-chip training of memristor crossbar based multi-layer neural networks[J]. Microelectronics Journal, 2017, 66: 31–40. doi: 10.1016/j.mejo.2017.05.005
|
ZHANG Yang, WANG Xiaoping, LI Yi, et al. Memristive model for synaptic circuits[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2017, 64(7): 767–771. doi: 10.1109/TCSⅡ.2016.2605069
|
WANG Chunhua, XIONG Lin, SUN Jingru, et al. Memristor-based neural networks with weight simultaneous perturbation training[J]. Nonlinear Dynamics, 2019, 95(4): 2893–2906. doi: 10.1007/s11071-018-4730-z
|
HODGKIN A L and HUXLEY A F. A quantitative description of membrane current and its application to conduction and excitation in nerve[J]. The Journal of physiology, 1952, 117(4): 500–544. doi: 10.1113/jphysiol.1952.sp004764
|
NAGUMO J, ARIMOTO S, and YOSHIZAWA S. An active pulse transmission line simulating nerve axon[J]. Proceedings of the IRE, 1962, 50(10): 2061–2070. doi: 10.1109/JRPROC.1962.288235
|
IZHIKEVICH E M. Simple model of spiking neurons[J]. IEEE Transactions on Neural Networks, 2003, 14(6): 1569–1572. doi: 10.1109/TNN.2003.820440
|
HINDMARSH J L and ROSE R M. A model of the nerve impulse using two first-order differential equations[J]. Nature, 1982, 296(5853): 162–164. doi: 10.1038/296162a0
|
HINDMARSH J L and ROSE R M. A model of neuronal bursting using three coupled first order differential equations[J]. Proceedings of the Royal Society B: Biological Sciences, 1984, 221(1222): 87–102. doi: 10.1098/rspb.1984.0024
|
KASLIK E. Analysis of two- and three-dimensional fractional-order Hindmarsh-Rose type neuronal models[J]. Fractional Calculus and Applied Analysis, 2017, 20(3): 623–645. doi: 10.1515/fca-2017-0033
|
LAKSHMANAN S, LIM C P, NAHAVANDI S, et al. Dynamical analysis of the Hindmarsh-Rose neuron with time delays[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(8): 1953–1958. doi: 10.1109/TNNLS.2016.2557845
|
THOTTIL S K and IGNATIUS R P. Nonlinear feedback coupling in Hindmarsh-Rose neurons[J]. Nonlinear Dynamics, 2017, 87(3): 1879–1899. doi: 10.1007/s11071-016-3160-z
|
CHUA L O and YANG L. Cellular neural networks: Theory[J]. IEEE Transactions on Circuits and Systems, 1988, 35(10): 1257–1272. doi: 10.1109/31.7600
|
HOPFIELD J J. Neurons with graded response have collective computational properties like those of two-state neurons[J]. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(10): 3088–3092. doi: 10.1073/pnas.81.10.3088
|
WU Kaijun, LUO Tianqi, LU Huaiwei, et al. Bifurcation study of neuron firing activity of the modified Hindmarsh-Rose model[J]. Neural Computing and Applications, 2016, 27(3): 739–747. doi: 10.1007/s00521-015-1892-1
|
MINEEJA K K and IGNATIUS R P. Spatiotemporal activities of a pulse-coupled biological neural network[J]. Nonlinear Dynamics, 2018, 92(4): 1881–1897. doi: 10.1007/s11071-018-4169-2
|
YAO Yuangen and MA Jun. Weak periodic signal detection by sine-Wiener-noise-induced resonance in the FitzHugh-Nagumo neuron[J]. Cognitive Neurodynamics, 2018, 12(3): 343–349. doi: 10.1007/s11571-018-9475-3
|
MA Jun, ZHANG Ge, HAYAT T, et al. Model electrical activity of neuron under electric field[J]. Nonlinear Dynamics, 2019, 95(2): 1585–1598. doi: 10.1007/s11071-018-4646-7
|
MA Jun and TANG Jun. A review for dynamics in neuron and neuronal network[J]. Nonlinear Dynamics, 2017, 89(3): 1569–1578. doi: 10.1007/s11071-017-3565-3
|
KUMAR S, STRACHAN J P, and WILLIAMS R S. Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing[J]. Nature, 2017, 548(7667): 318–321. doi: 10.1038/nature23307
|
WANG Zhongrui, JOSHI S, SAVEL’EV S E, et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing[J]. Nature Materials, 2017, 16(1): 101–108. doi: 10.1038/nmat4756
|
SERB A, BILL J, KHIAT A, et al. Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses[J]. Nature Communications, 2016, 7: 12611. doi: 10.1038/ncomms12611
|
PREZIOSO M, MERRIKH-BAYAT F, HOSKINS B D, et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors[J]. Nature, 2015, 521(7550): 61–64. doi: 10.1038/nature14441
|
RECH P C. Chaos and hyperchaos in a Hopfield neural network[J]. Neurocomputing, 2011, 74(17): 3361–3364. doi: 10.1016/j.neucom.2011.05.016
|
LIN Hairong, WANG Chunhua, and TAN Yumei. Hidden extreme multistability with hyperchaos and transient chaos in a Hopfield neural network affected by electromagnetic radiation[J]. Nonlinear Dynamics, 2019, 99: 2369–2386. doi: org/10.1007/s11071-019-05408-5
|
ZHAO Liang, HONG Qinghui, and WANG Xiaoping. Novel designs of spiking neuron circuit and STDP learning circuit based on memristor[J]. Neurocomputing, 2018, 314: 207–214. doi: 10.1016/j.neucom.2018.06.062
|
LÜ Mi and MA Jun. Multiple modes of electrical activities in a new neuron model under electromagnetic radiation[J]. Neurocomputing, 2016, 205: 375–381. doi: 10.1016/j.neucom.2016.05.004
|
LI Jiajia, LIU Shaobao, LIU Weiming, et al. Suppression of firing activities in neuron and neurons of network induced by electromagnetic radiation[J]. Nonlinear Dynamics, 2016, 83(1/2): 801–810. doi: 10.1007/s11071-015-2368-7
|
XU Ying, YING Heping, JIA Ya, et al. Autaptic regulation of electrical activities in neuron under electromagnetic induction[J]. Scientific Reports, 2017, 7: 43452. doi: 10.1038/srep43452
|
WU Fuqiang, WANG Chunni, JIN Wuyin, et al. Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise[J]. Physica A: Statistical Mechanics and its Applications, 2017, 469: 81–88. doi: 10.1016/j.physa.2016.11.056
|
WU Juan, XU Yong, and MA Jun. Lévy noise improves the electrical activity in a neuron under electromagnetic radiation[J]. PLoS One, 2017, 12(3): e0174330. doi: 10.1371/journal.pone.0174330
|
LU Lulu, JIA Ya, LIU Wangheng, et al. Mixed stimulus-induced mode selection in neural activity driven by high and low frequency current under electromagnetic radiation[J]. Complexity, 2017, 2017: 7628537. doi: 10.1155/2017/7628537
|
MA Jun, LÜ Mi, ZHOU Ping, et al. Phase synchronization between two neurons induced by coupling of electromagnetic field[J]. Applied Mathematics and Computation, 2017, 307: 321–328. doi: 10.1016/j.amc.2017.03.002
|
REN Guodong, XU Ying, and WANG Chunni. Synchronization behavior of coupled neuron circuits composed of memristors[J]. Nonlinear Dynamics, 2017, 88(2): 893–901. doi: 10.1007/s11071-016-3283-2
|
MA Jun, WU Fuqiang, and WANG Chunni. Synchronization behaviors of coupled neurons under electromagnetic radiation[J]. International Journal of Modern Physics B, 2017, 31(2): 1650251. doi: 10.1142/S0217979216502519
|
GE Mengyan, JIA Ya, XU Ying, et al. Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation[J]. Nonlinear Dynamics, 2018, 91(1): 515–523. doi: 10.1007/s11071-017-3886-2
|
TAKEMBO C N, MVOGO A, FOUDA H P E, et al. Effect of electromagnetic radiation on the dynamics of spatiotemporal patterns in memristor-based neuronal network[J]. Nonlinear Dynamics, 2019, 95(2): 1067–1078. doi: 10.1007/s11071-018-4616-0
|
FENG Peihua, WU Ying, and ZHANG Jiazhong. A route to chaotic behavior of single neuron exposed to external electromagnetic radiation[J]. Frontiers in Computational Neuroscience, 2017, 11(94): 1–9. doi: 10.3389/fncom.2017.00094
|
HU Xiaoyu, LIU Chongxin, LIU Ling, et al. Chaotic dynamics in a neural network under electromagnetic radiation[J]. Nonlinear Dynamics, 2018, 91(3): 1541–1554. doi: 10.1007/s11071-017-3963-6
|
LIN Hairong and WANG Chunhua. Influences of electromagnetic radiation distribution on chaotic dynamics of a neural network[J]. Applied Mathematics and Computation, 2020, 369: 124840. doi: 10.1016/j.amc.2019.124840
|
BAO Bocheng, HU Aihuang, BAO Han, et al. Three-dimensional memristive Hindmarsh-Rose neuron model with hidden coexisting asymmetric behaviors[J]. Complexity, 2018, 2018: 3872573. doi: 10.1155/2018/3872573
|
BAO Han, LIU Wenbo, and HU Aihuang. Coexisting multiple firing patterns in two adjacent neurons coupled by memristive electromagnetic induction[J]. Nonlinear Dynamics, 2019, 95(1): 43–56. doi: 10.1007/s11071-018-4549-7
|
BAO Han, HU Aihuang, LIU Wenbo, et al. Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(2): 502–511. doi: 10.1109/TNNLS.2019.2905137
|
ZHANG Jihong and LIAO Xiaofeng. Synchronization and chaos in coupled memristor-based FitzHugh-Nagumo circuits with memristor synapse[J]. AEU-International Journal of Electronics and Communications, 2017, 75: 82–90. doi: 10.1016/j.aeue.2017.03.003
|
XU Ying, JIA Ya, MA Jun, et al. Synchronization between neurons coupled by memristor[J]. Chaos, Solitons & Fractals, 2017, 104: 435–442. doi: 10.1016/j.chaos.2017.09.002
|
ZHANG Ge, WANG Chunni, ALZAHRANI F, et al. Investigation of dynamical behaviors of neurons driven by memristive synapse[J]. Chaos, Solitons & Fractals, 2018, 108: 15–27. doi: 10.1016/j.chaos.2018.01.017
|
BAO Han, LIU Wenbo, and CHEN Mo. Hidden extreme multistability and dimensionality reduction analysis for an improved non-autonomous memristive FitzHugh-Nagumo circuit[J]. Nonlinear Dynamics, 2019, 96(3): 1879–1894. doi: 10.1007/s11071-019-04890-1
|
CHEN Mo, QI Jianwei, XU Quan, et al. Quasi-period, periodic bursting and bifurcations in memristor-based Fitzhugh-Nagumo circuit[J]. AEU-International Journal of Electronics and Communications, 2019, 110: 152840. doi: 10.1016/j.aeue.2019.152840
|
LI Qingdu, TANG Song, ZENG Hongzheng, et al. On hyperchaos in a small memristive neural network[J]. Nonlinear Dynamics, 2014, 78(2): 1087–1099. doi: 10.1007/s11071-014-1498-7
|
PHAM V T, JAFARI S, VAIDYANATHAN S, et al. A novel memristive neural network with hidden attractors and its circuitry implementation[J]. Science China Technological Sciences, 2016, 59(3): 358–363. doi: 10.1007/s11431-015-5981-2
|
BAO Bocheng, QIAN Hui, XU Quan, et al. Coexisting behaviors of asymmetric attractors in hyperbolic-type memristor based Hopfield neural network[J]. Frontiers in Computational Neuroscience, 2017, 11(81): 1–14. doi: 10.3389/fncom.2017.00081
|
NJITACKE Z T, KENGNE J, and FOTSIN H B. A plethora of behaviors in a memristor based Hopfield neural networks (HNNs)[J]. International Journal of Dynamics and Control, 2019, 7(1): 36–52. doi: 10.1007/s40435-018-0435-x
|
XU Quan, SONG Zhe, BAO Han, et al. Two-neuron-based non-autonomous memristive Hopfield neural network: Numerical analyses and hardware experiments[J]. AEU-International Journal of Electronics and Communications, 2018, 96: 66–74. doi: 10.1016/j.aeue.2018.09.017
|
CHEN Chengjie, CHEN Jingqi, BAO Han, et al. Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons[J]. Nonlinear Dynamics, 2019, 95(4): 3385–3399. doi: 10.1007/s11071-019-04762-8
|
HU Jin, and WANG Jun. Global uniform asymptotic stability of memristor-based recurrent neural networks with time delays[C]. 2010 International Joint Conference on Neural Networks, Barcelona, Spain, 2010: 1–8. doi: 10.1109/IJCNN.2010.5596359.
|
WU Ailong and ZENG Zhigang. Exponential stabilization of memristive neural networks with time delays[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(12): 1919–1929. doi: 10.1109/TNNLS.2012.2219554
|
WU Huaiqin, LI Ruoxia, WEI Hongzhi, et al. Synchronization of a class of memristive neural networks with time delays via sampled-data control[J]. International Journal of Machine Learning and Cybernetics, 2015, 6(3): 365–373. doi: 10.1007/s13042-014-0271-z
|
ZHANG Guodong, HU Junhao, and SHEN Yi. Exponential lag synchronization for delayed memristive recurrent neural networks[J]. Neurocomputing, 2015, 154: 86–93. doi: 10.1016/j.neucom.2014.12.016
|
DING Sanbo, WANG Zhanshan, NIU Haisha, et al. Stop and go adaptive strategy for synchronization of delayed memristive recurrent neural networks with unknown synaptic weights[J]. Journal of the Franklin Institute, 2017, 354(12): 4989–5010. doi: 10.1016/j.jfranklin.2017.05.011
|
WU Hongjuan, FENG Yuming, TU Zhengwen, et al. Exponential synchronization of memristive neural networks with time delays[J]. Neurocomputing, 2018, 297: 1–7. doi: 10.1016/j.neucom.2018.01.017
|
CAI Shuiming, LI Xiaojing, ZHOU Peipei, et al. Aperiodic intermittent pinning control for exponential synchronization of memristive neural networks with time-varying delays[J]. Neurocomputing, 2019, 332: 249–258. doi: 10.1016/j.neucom.2018.12.070
|
WANG Xin, SHE Kun, ZHONG Shouming, et al. Exponential synchronization of memristor-based neural networks with time-varying delay and stochastic perturbation[J]. Neurocomputing, 2017, 242: 131–139. doi: 10.1016/j.neucom.2017.02.059
|
LIU Dan, ZHU Song, and SUN Kaili. Global anti-synchronization of complex-valued memristive neural networks with time delays[J]. IEEE Transactions on Cybernetics, 2018, 49(5): 1735–1747. doi: 10.1109/TCYB.2018.2812708
|
ZHANG Weiwei, ZHANG Hai, CAO Jinde, et al. Synchronization in uncertain fractional-order memristive complex-valued neural networks with multiple time delays[J]. Neural Networks, 2019, 110: 186–198. doi: 10.1016/j.neunet.2018.12.004
|
YAO Wei, WANG Chunhua, CAO Jinde, et al. Hybrid multisynchronization of coupled multistable memristive neural networks with time delays[J]. Neurocomputing, 2019, 363: 281–294. doi: 10.1016/j.neucom.2019.07.014
|
TANG Yu. Terminal sliding mode control for rigid robots[J]. Automatica, 1998, 34(1): 51–56. doi: 10.1016/s0005-1098(97)00174-x
|
ABDURAHMAN A, JIANG Haijun, and TENG Zhidong. Finite-time synchronization for memristor-based neural networks with time-varying delays[J]. Neural Networks, 2015, 69: 20–28. doi: 10.1016/j.neunet.2015.04.015
|
ZHAO Hui, LI Lixiang, PENG Haipeng, et al. Finite-time robust synchronization of memrisive neural network with perturbation[J]. Neural Processing Letters, 2018, 47(2): 509–533. doi: 10.1007/s11063-017-9664-9
|
GUO Zhenyuan, GONG Shuqing, and HUANG Tingwen. Finite-time synchronization of inertial memristive neural networks with time delay via delay-dependent control[J]. Neurocomputing, 2018, 293: 100–107. doi: 10.1016/j.neucom.2018.03.004
|
HUANG Dasong, JIANG Minghui, and JIAN Jigui. Finite-time synchronization of inertial memristive neural networks with time-varying delays via sampled-date control[J]. Neurocomputing, 2017, 266: 527–539. doi: 10.1016/j.neucom.2017.05.075
|
YANG Xinsong. Can neural networks with arbitrary delays be finite-timely synchronized?[J]. Neurocomputing, 2014, 143: 275–281. doi: 10.1016/j.neucom.2014.05.064
|
VELMURUGAN G, RAKKIYAPPAN R, and CAO Jinde. Finite-time synchronization of fractional-order memristor-based neural networks with time delays[J]. Neural Networks, 2016, 73: 36–46. doi: 10.1016/j.neunet.2015.09.012
|
ZHENG Mingwen, LI Lixiang, PENG Haipeng, et al. Finite-time projective synchronization of memristor-based delay fractional-order neural networks[J]. Nonlinear Dynamics, 2017, 89(4): 2641–2655. doi: 10.1007/s11071-017-3613-z
|
ZHENG Mingwen, LI Lixiang, PENG Haipeng, et al. Finite-time stability and synchronization for memristor-based fractional-order Cohen-Grossberg neural network[J]. The European Physical Journal B, 2016, 89(9): 1–11. doi: 10.1140/epjb/e2016-70337-6
|
HUI Meng, LUO Ni, WU Qisheng, et al. New results of finite-time synchronization via piecewise control for memristive cohen-grossberg neural networks with time-varying delays[J]. IEEE Access, 2019, 7: 79173–79185. doi: 10.1109/access.2019.2922973
|
POLYAKOV A. Nonlinear feedback design for fixed-time stabilization of linear control systems[J]. IEEE Transactions on Automatic Control, 2011, 57(8): 2106–2110. doi: 10.1109/tac.2011.2179869
|
CAO Jinde and LI Ruoxia. Fixed-time synchronization of delayed memristor-based recurrent neural networks[J]. Science China Information Sciences, 2017, 60(3): 032201. doi: 10.1007/s11432-016-0555-2
|
WANG Shiqin, GUO Zhenyuan, WEN Shiping, et al. Finite/fixed-time synchronization of delayed memristive reaction-diffusion neural networks[J]. Neurocomputing, 2020, 375: 1–8. doi: 10.1016/j.neucom.2019.06.092
|
LI Ruoxia, CAO Jinde, ALSAEDI A, et al. Exponential and fixed-time synchronization of Cohen-Grossberg neural networks with time-varying delays and reaction-diffusion terms[J]. Applied Mathematics and Computation, 2017, 313: 37–51. doi: 10.1016/j.amc.2017.05.073
|
CHEN Chuan, LI Lixiang, PENG Haipeng, et al. Fixed-time projective synchronization of memristive neural networks with discrete delay[J]. Physica A: Statistical Mechanics and its Applications, 2019, 534: 122248. doi: 10.1016/j.physa.2019.122248
|