Citation: | Peili LI, Haixia XU. Blockchain User Anonymity and Traceability Technology[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1061-1067. doi: 10.11999/JEIT190813 |
NAKAMOTO S. Bitcoin: A peer-to-peer electronic cash system[EB/OL]. https://bitcoin.org/bitcoin.pdf, 2008.
|
曹素珍, 王斐, 郎晓丽, 等. 基于无证书的多方合同签署协议[J]. 电子与信息学报, 2019, 41(11): 2691–2698. doi: 10.11999/JEIT190166
CAO Suzhen, WANG Fei, LANG Xiaoli, et al. Multi-party contract signing protocol based on certificateless[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2691–2698. doi: 10.11999/JEIT190166
|
NARAYANAN A, BONNEAU J, FELTEN E, et al. Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction[M]. Princeton University Press, 2016.
|
牛淑芬, 王金风, 王伯彬, 等. 区块链上基于B+树索引结构的密文排序搜索方案[J]. 电子与信息学报, 2019, 41(10): 2409–2415. doi: 10.11999/JEIT190038
NIU Shufen, WANG Jinfeng, WANG Bobin, et al. Ciphertext sorting search scheme based on b+ tree index structure on blockchain[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2409–2415. doi: 10.11999/JEIT190038
|
邹均, 张海宁, 唐屹, 等. 区块链技术指南[M]. 北京: 机械工业出版社, 2016: 97–99.
ZOU Jun, ZHANG Haining, TANG Yi, et al. Guidelines for Blockchain Technology[M]. Beijing: China Machine Press, 2016: 97–99.
|
CHAUM D, FIAT A, and NAOR M. Untraceable Electronic Cash[M]. GOLDWASSER S. Advances in Cryptology — CRYPTO’ 88. New York: Springer, 1990: 319–327. doi: 10.1007/0-387-34799-2_25.
|
CHAUM D and VAN HEYST E. Group Signatures[M]. DAVIES D W. Advances in Cryptology — EUROCRYPT ’91. Berlin: Springer, 1991: 257–265. doi: 10.1007/3-540-46416-6_22.
|
GROTH J and SAHAI A. Efficient non-interactive proof systems for bilinear groups[C]. The 27th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Istanbul, Turkey, 2008: 415–432. doi: 10.1007/978-3-540-78967-3_24.
|
CHAUM D L. Untraceable electronic mail, return addresses, and digital pseudonyms[J]. Communications of the ACM, 1981, 24(2): 84–90. doi: 10.1145/358549.358563
|
BONNEAU J, NARAYANAN A, MILLER A, et al. Mixcoin: Anonymity for Bitcoin with Accountable Mixes[M]. CHRISTIN N and SAFAVI-NAINI R. Financial Cryptography and Data Security. Berlin: Springer, 2014: 486–504. doi: 10.1007/978-3-662-45472-5_31.
|
VALENTA L and ROWAN B. BLIndcoin: Blinded, accountable mixes for bitcoin[C]. 2015 International Conference on Financial Cryptography and Data Security, San Juan, USA, 2015: 112–126. doi: 10.1007/978-3-662-48051-9_9.
|
MAXWELL G. Coinjoin: Bitcoin privacy for the real world[EB/OL]. Post on Bitcoin Forum. https://bitcointalk.org/index.php?topic=279249.0, 2013.
|
RUFFING T, MORENO-SANCHEZ P, and KATE A. CoinShuffle: Practical decentralized coin mixing for bitcoin[C]. The 19th European Symposium on Research in Computer Security, Wroclaw, Poland, 2014: 345–364. doi: 10.1007/978-3-319-11212-1_20.
|
RUFFING T, MORENO-SANCHEZ P, and KATE A. P2P mixing and unlinkable bitcoin transactions[C]. The 24th Annual Network and Distributed System Security Symposium, San Diego, USA, 2017: 824.
|
RUFFING T and MORENO-SANCHEZ P. Valueshuffle: Mixing confidential transactions for comprehensive transaction privacy in bitcoin[C]. 2017 International Conference on Financial Cryptography and Data Security, Sliema, Malta, 2017: 133–154.
|
CHANDRAN N, GROTH J, and SAHAI A. Ring signatures of sub-linear size without random oracles[C]. The 34th International Colloquium on Automata, Languages, and Programming, Wrocław, Poland, 2007: 423–434.
|
BERGAN T, ANDERSON O, DEVIETTI J, et al. CryptoNote v 2.0[J]. https://cryptonote.org/whitepaper.pdf, 2013.
|
LIU J K, WEI V K, and WONG D S. Linkable spontaneous anonymous group signature for ad hoc groups[C]. The 9th Australasian Conference on Information Security and Privacy, Sydney, Australia, 2004: 325–335. doi: 10.1007/978-3-540-27800-9_28.
|
MIERS I, GARMAN C, GREEN M, et al. Zerocoin: Anonymous distributed e-cash from bitcoin[C]. 2013 IEEE Symposium on Security and Privacy, Berkeley, USA, 2013: 397–411.
|
BEN SASSON E, CHIESA A, GARMAN C, et al. Zerocash: Decentralized anonymous payments from bitcoin[C]. 2014 IEEE Symposium on Security and Privacy, San Jose, USA, 2014: 459–474.
|
BEN-SASSON E, CHIESA A, TROMER E, et al. Succinct non-interactive zero knowledge for a von Neumann architecture[C]. The 23rd USENIX Conference on Security Symposium, Berkeley, USA, 2014: 781–796.
|
PEDERSEN T P. Non-interactive and information-theoretic Secure Verifiable Secret Sharing[M]. FEIGENBAUM J. Annual International Cryptology— CRYPTO ’91. Berlin: Springer, 1991: 129–140. doi: 10.1007/3-540-46766-1_9.
|
FUJISAKI E and SUZUKI K. Traceable ring signature[C]. The 10th International Conference on Practice and Theory in Public-Key Cryptography, Beijing, China, 2007: 181–200. doi: 10.1007/978-3-540-71677-8_13.
|
GROTH J. Fully anonymous group signatures without random oracles[C]. The 13th International Conference on the Theory and Application of Cryptology and Information Security, Kuching, Malaysia, 2007: 164–180. doi: 10.1007/978-3-540-76900-2_10.
|
ZHOU Sujing and LIN Dongdai. Shorter Verifier-local Revocation Group Signatures from Bilinear Maps[M]. POINTCHEVAL D, MU Yi, and CHEN Kefei. Cryptology and Network Security. Berlin: Springer, 2006: 126–143. doi: 10.1007/11935070_8.
|
BONEH D and BOYEN X. Short Signatures without Random Oracles[M]. CACHIN C and CAMENISCH J L. Advances in Cryptology - EUROCRYPT 2004. Berlin: Springer, 2004: 56–73. doi: 10.1007/978-3-540-24676-3_4.
|
1. | 周晨,周乾伟,陈翰墨,管秋,胡海根,吴延壮. 面向RGBD图像显著性检测的循环逐尺度融合网络. 小型微型计算机系统. 2023(10): 2276-2283 . ![]() | |
2. | 叶海峰,赵玉琛. 视觉位置识别中代表地点的标识牌算法. 小型微型计算机系统. 2021(04): 823-828 . ![]() | |
3. | 王慧玲,宋鑫怡,杨颖. 基于优化查询的改进显著性检测算法. 吉林大学学报(信息科学版). 2020(03): 319-324 . ![]() | |
4. | 郭迎春,李卓. 基于边缘特征和自适应融合的视频显著性检测. 河北工业大学学报. 2019(01): 1-7 . ![]() | |
5. | 鲁文超,段先华,徐丹,王万耀. 基于多尺度下凸包改进的贝叶斯模型显著性检测算法. 计算机科学. 2019(06): 295-300 . ![]() | |
6. | 王宝艳,张铁,李凯,杜松林. DEL分割算法对SSLS算法的改进. 小型微型计算机系统. 2019(10): 2052-2057 . ![]() | |
7. | 张巧荣,徐国愚,张俊峰. 利用视觉显著性的前景目标分割. 兰州大学学报(自然科学版). 2019(06): 833-840 . ![]() | |
8. | 杨俊丰,林亚平,欧博,蒋军强,李强. 基于显著性加权随机优化的快速响应码美化方法. 电子与信息学报. 2018(02): 289-297 . ![]() | |
9. | 邓晨,谢林柏. 全局对比和背景先验驱动的显著目标检测. 计算机工程与应用. 2018(03): 212-216 . ![]() | |
10. | 刘亚宁,吴清,魏雪. 基于流行排序的前景背景显著性检测算法. 科学技术与工程. 2018(18): 74-81 . ![]() | |
11. | 闫钧华,肖勇旗,姜惠华,杨勇,张寅. 融合区域像素显著性和时域信息的地面动目标检测及其DSP实现. 电子设计工程. 2018(19): 178-183+193 . ![]() | |
12. | 陈厚仁,蔡延光. 基于视频的干线交通流检测系统的研究与实现. 工业控制计算机. 2017(07): 85-87 . ![]() | |
13. | 赵艳艳,沈西挺. 基于同步更新的背景检测显著性优化. 计算机工程. 2017(10): 264-267 . ![]() | |
14. | 田畅,姜青竹,吴泽民,刘涛,胡磊. 基于区域协方差的视频显著度局部空时优化模型. 电子与信息学报. 2016(07): 1586-1593 . ![]() | |
15. | 罗会兰,万成涛,孔繁胜. 基于KL散度及多尺度融合的显著性区域检测算法. 电子与信息学报. 2016(07): 1594-1601 . ![]() | |
16. | 张晴,林家骏,戴蒙. 基于图的流行排序的显著目标检测改进算法. 计算机工程与应用. 2016(22): 26-32+38 . ![]() | |
17. | 杜永强. 过度曝光图像缺失信息修复算法. 科技通报. 2016(08): 146-149 . ![]() | |
18. | 郎波,樊一娜,黄静. 利用混合高斯进行物体成分拟合匹配的算法. 科学技术与工程. 2016(20): 73-80 . ![]() | |
19. | 项导,侯赛辉,王子磊. 基于背景学习的显著物体检测. 中国图象图形学报. 2016(12): 1634-1643 . ![]() | |
20. | 吕建勇,唐振民. 一种基于图的流形排序的显著性目标检测改进方法. 电子与信息学报. 2015(11): 2555-2563 . ![]() |