Advanced Search
Volume 42 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
Changchuan CHEN, Kui LI, Fei QIAO, Hongwei JIANG, Manqi ZHAO, Maosheng GONG, Haining WANG, Tianqi ZHANG. Measurement Algorithm of Building Vibration Displacement Based on Image Signal Processing[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2516-2523. doi: 10.11999/JEIT190805
Citation: Changchuan CHEN, Kui LI, Fei QIAO, Hongwei JIANG, Manqi ZHAO, Maosheng GONG, Haining WANG, Tianqi ZHANG. Measurement Algorithm of Building Vibration Displacement Based on Image Signal Processing[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2516-2523. doi: 10.11999/JEIT190805

Measurement Algorithm of Building Vibration Displacement Based on Image Signal Processing

doi: 10.11999/JEIT190805
Funds:  The National Key R&D Program of China (2017YFC1500601), The National Natural Science Foundation of China (61671095, 61771085, 61702065, 61701067), The Key Research Projects in Teaching Reform of Postgraduate Education in Chongqing City (yjg192019)
  • Received Date: 2019-10-16
  • Rev Recd Date: 2020-04-12
  • Available Online: 2020-04-28
  • Publish Date: 2020-10-13
  • A micro-displacement measurement algorithm is proposed based on the Orientation Code Matching (OCM) and Edge Enhanced Matching (EEM) algorithms for monitoring the structural damage of tall buildings after earthquake. The algorithm first fuses the gradient information of the original image with the pixel intensity to enhance the image information; Then the phase correlation method is used to perform the matching operation, the matching speed is 96.1% higher than the normalized cross-correlation method; Finally, the sub-pixel interpolation method is used to make the measurement achieve sub-pixel accuracy. Experimental results show that the proposed algorithm avoids the loss of image gradient information during the quantization of OCM and EEM algorithms, greatly improves the template matching accuracy, and the matching speed is 43.3% higher than OCM and 19.6% higher than EEM.
  • loading
  • FUKUDA Y, FENG M Q, and SHINOZUKA M. Cost-effective vision-based system for monitoring dynamic response of civil engineering structures[J]. Structural Control and Health Monitoring, 2010, 17(8): 918–936. doi: 10.1002/stc.360
    BREUER P, CHMIELEWSKI T, GÓRSKI P, et al. Application of GPS technology to measurements of displacements of high-rise structures due to weak winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(3): 223–230. doi: 10.1016/S0167-6105(01)00221-5
    吴元. 一种基于参数更新的机载SAR图像目标定位方法[J]. 电子与信息学报, 2019, 41(5): 1063–1068. doi: 10.11999/JEIT180564

    WU Yuan. An airborne SAR image target location algorithm based on parameter refining[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1063–1068. doi: 10.11999/JEIT180564
    RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: An efficient alternative to SIFT or SURF[C]. 2011 International Conference on Computer Vision, Barcelona, Spain, 2011: 2564–2571. doi: 10.1109/ICCV.2011.6126544.
    SHU Caiwei and XIAO Xuezhong. ORB-oriented mismatching feature points elimination[C]. 2018 IEEE International Conference on Progress in Informatics and Computing (PIC), Suzhou, China, 2018: 246–249. doi: 10.1109/PIC.2018.8706272.
    WANG Yangping, YONG Jiu, ZHU Zhengping, et al. Augmented reality tracking registration based on improved KCF tracking and ORB feature detection[C]. The 7th International Conference on Information, Communication and Networks (ICICN), Macao, China, 2019: 230–233. doi: 10.1109/ICICN.2019.8834947.
    WANG Zhenhua, FAN Bin, and WU Fuchao. FRIF: Fast robust invariant feature[C]. British Machine Vision Conference 2013, Bristol, UK, 2013. doi: 10.5244/C.27.16.
    WANG Xiangyang, WANG Chao, WANG Li, et al. A fast and high accurate image copy-move forgery detection approach[J]. Multidimensional Systems and Signal Processing, 2020, 31(3): 857–883. doi: 10.1007/s11045-019-00688-x
    WANG Xu, ZOU Jiabao, and SHI Daosheng. An improved ORB image feature matching algorithm based on SURF[C]. The 3rd International Conference on Robotics and Automation Engineering (ICRAE), Guangzhou, China, 2018: 218-222. doi: 10.1109/ICRAE.2018.8586755.
    WANG Xinzhu, LV Xuliang, LI Ling, et al. A new method of speeded up robust features image registration based on image preprocessing[C]. 2018 International Conference on Information Systems and Computer Aided Education (ICISCAE), Changchun, China, 2018: 317-321. doi: 10.1109/ICISCAE.2018.8666894.
    牛燕雄, 陈梦琪, 张贺. 基于尺度不变特征变换的快速景象匹配方法[J]. 电子与信息学报, 2019, 41(3): 626–631. doi: 10.11999/JEIT180440

    NIU Yanxiong, CHEN Mengqi, and ZHANG He. Fast scene matching method based on scale invariant feature transform[J]. Journal of Electronics and Information Technology, 2019, 41(3): 626–631. doi: 10.11999/JEIT180440
    TAREEN S A K and SALEEM Z. A comparative analysis of SIFT, SURF, KAZE, AKAZE, ORB, and BRISK[C]. 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 2018: 1–10. doi: 10.1109/ICOMET.2018.8346440.
    黄建坤. 基于图像序列的桥梁形变位移测量方法[D].[硕士论文], 西南交通大学, 2018.

    HUANG Jiankun. Displacement measurement method for bridge deformation based on image sequence[D].[Master dissertation], Southwest Jiaotong University, 2018.
    FUKUDA Y, FENG M Q, NARITA Y, et al. Vision-based displacement sensor for monitoring dynamic response using robust object search algorithm[J]. IEEE Sensors Journal, 2013, 13(12): 4725–4732. doi: 10.1109/JSEN.2013.2273309
    LUO Longxi and FENG M Q. Edge‐enhanced matching for gradient-based computer vision displacement measurement[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(12): 1019–1040. doi: 10.1111/mice.12415
    刘有桥. 基于图像处理的轨道位移监测系统研究[J]. 计算机应用与软件, 2019, 36(1): 246–250, 315. doi: 10.3969/j.issn.1000-386x.2019.01.044

    LIU Youqiao. Track displacement monitoring system based on image processing[J]. Computer Applications and Software, 2019, 36(1): 246–250, 315. doi: 10.3969/j.issn.1000-386x.2019.01.044
    LUO Longxi, FENG M Q, and WU Z Y. Robust vision sensor for multi-point displacement monitoring of bridges in the field[J]. Engineering Structures, 2018, 163: 255–266. doi: 10.1016/j.engstruct.2018.02.014
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(11)

    Article Metrics

    Article views (4691) PDF downloads(107) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return