Advanced Search
Volume 43 Issue 2
Feb.  2021
Turn off MathJax
Article Contents
Yan JIN, Yagang LI, Hongbing JI. Adaptive ASR Filtering in Impulsive Noise Environments[J]. Journal of Electronics & Information Technology, 2021, 43(2): 296-302. doi: 10.11999/JEIT190793
Citation: Yan JIN, Yagang LI, Hongbing JI. Adaptive ASR Filtering in Impulsive Noise Environments[J]. Journal of Electronics & Information Technology, 2021, 43(2): 296-302. doi: 10.11999/JEIT190793

Adaptive ASR Filtering in Impulsive Noise Environments

doi: 10.11999/JEIT190793
Funds:  China Electronics Technology Group Corporation Project (CSC201806965022), The China Scholarship Council Project (HX01201712003)
  • Received Date: 2019-10-16
  • Rev Recd Date: 2020-08-26
  • Available Online: 2020-12-11
  • Publish Date: 2021-02-23
  • In the field of impulsive noise processing based on alpha-stable distribution model, the classical filtering methods have been largely motivated by special cases of alpha-stable family such as Cauchy distribution and Meridian distribution, and their pulse suppression ability is limited. To address the above limitations, a class of robust cost functions are devised and a robust filtering method ASR (${\rm{AS}}\alpha {\rm{S}} $ kobust) is proposed, based on the M estimation theory and the $ {\rm{AS}}\alpha {\rm{S}} $ distribution model, with its robustness analyzed by the influence functions. Then the expression of the linearity parameter is proposed and a threshold selection method is adopted for an adaptive linearity parameter selection. The unified theoretical framework of robust filtering is devised, and Myriad filters and Meridian filters are interpreted within the unifying framework. In addition, a filtering method which is, namely AS-FT (ASR STFT) is developed and the parameters estimation of noisy Linear Frequency Modulation (LFM) signals shows the robustness of ASR filtering. Simulation results show that the ASR method is more robust to outliers than Myriad filters, Median filters, fractional lower-order statistics and other traditional robust filters.
  • loading
  • TALEBI S P and MANDIC D P. Distributed particle filtering of α-stable signals[J]. IEEE Signal Processing Letters, 2017, 24(12): 1862–1866. doi: 10.1109/LSP.2017.2761182
    ZHANG Jinfen, QIU Tianshuang, WANG Peng, et al. A novel cauchy score function based DOA estimation method under alpha-stable noise environments[J]. Signal Processing, 2017, 138: 98–105. doi: 10.1016/j.sigpro.2017.03.014
    杨帆, 贾辉, 刘宝树, 等. α稳定脉冲噪声下宽带电力线通信系统性能分析[J]. 电子与信息学报, 2019, 41(6): 1374–1380. doi: 10.11999/JEIT180261

    YANG Fan, JIA Hui, LIU Baoshu, et al. Performance analysis of broadband power-line communications systems under the alpha-stable impulsive noise[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1374–1380. doi: 10.11999/JEIT180261
    RAMIREZ J M and PAREDES J L. Recursive weighted myriad based filters and their optimizations[J]. IEEE Transactions on Signal Processing, 2016, 64(15): 4027–4039. doi: 10.1109/TSP.2016.2557304
    ZORLU H. Optimization of weighted myriad filters with differential evolution algorithm[J]. AEU-International Journal of Electronics and Communications, 2017, 77: 1–9. doi: 10.1016/j.aeue.2017.04.020
    KURKIN D, ROENKO A, LUKIN V, et al. An adaptive meridian estimator[C]. 2011 Microwaves, Radar and Remote Sensing Symposium, Kiev, Ukraine, 2011: 301–304. doi: 10.1109/MRRS.2011.6053660.
    金艳, 胡碧昕, 姬红兵. α稳定分布噪声下一种稳健加权滤波的统一框架[J]. 系统工程与电子技术, 2016, 38(10): 2221–2227. doi: 10.3969/j.issn.1001-506X.2016.10.01

    JIN Yan, HU Bixin, and JI Hongbing. Unified framework of robust weighted filtering in α stable noise[J]. Systems Engineering and Electronics, 2016, 38(10): 2221–2227. doi: 10.3969/j.issn.1001-506X.2016.10.01
    金艳, 段鹏婷, 姬红兵. 复杂噪声环境下基于LVD的LFM信号参数估计[J]. 电子与信息学报, 2014, 36(5): 1106–1112. doi: 10.3724/SP.J.1146.2013.01013

    JIN Yan, DUAN Pengting, and JI Hongbing. Parameter estimation of LFM signals based on LVD in complicated noise environments[J]. Journal of Electronics &Information Technology, 2014, 36(5): 1106–1112. doi: 10.3724/SP.J.1146.2013.01013
    张贤达. 现代信号处理[M]. 北京: 清华大学出版社, 1995.

    ZHANG Xianda. Modern Signal Processing[M]. Beijing: Tsinghua University Press, 1995.
    王志洋. Chirp信号参数估计方法的研究[D]. [硕士论文], 吉林大学, 2013.

    WANG Zhiyang. Study on parameter estimation of chirp signal[D]. [Master dissertation], Jilin University, 2013.
    RUPPERT D. Robust statistics: The approach based on influence functions[J]. Technometrics, 1987, 29(2): 240–241. doi: 10.1080/00401706.1987.10488218
    AYSAL T C and BARNER K E. Meridian filtering for robust signal processing[J]. IEEE Transactions on Signal Processing, 2007, 55(8): 3949–3962. doi: 10.1109/tsp.2007.894383
    CHEN Yunfei and CHEN Jiming. Novel SαS PDF approximations and their applications in wireless signal detection[J]. IEEE Transactions on Wireless Communications, 2015, 14(2): 1080–1091. doi: 10.1109/TWC.2014.2364181
    KALLURI S and ARCE G R. Adaptive weighted myriad filter algorithms for robust signal processing in α-stable noise environments[J]. IEEE Transactions on Signal Processing, 1998, 46(2): 322–334. doi: 10.1109/78.655418
    GONZALEZ J G and ARCE G R. Optimality of the myriad filter in practical impulsive-noise environments[J]. IEEE Transactions on Signal Processing, 2001, 49(2): 438–441. doi: 10.1109/78.902126
    SUORANTA R. Amplitude domain approach to digital filtering: Therory and applications of L-filters[D]. [Ph.D. dissertation], Technical Research Center of Finland, 1995: 199.
    DJUROVIĆ I, LUKIN V V, and ROENKO A A. Removal of α-stable noise in frequency modulated signals using robust DFT forms[J]. Telecommunications and Radio Engineering, 2004, 61(7/12): 574–590. doi: 10.1615/TelecomRadEng.v61.i7.20
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (903) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return